Big Canyon Creek Restoration Project

Revised Initial Study

NEWPORT BEACH, ORANGE COUNTY, CALIFORNIA

Lead Agency:

City of Newport Beach 3300 Newport Blvd. Newport Beach, CA 92663 Contact: David Kiff, City Manager Phone: 949-644-3002

Prepared for:

Mr. Mark Reader, Project Manager Public Works Department City of Newport Beach 3300 Newport Blvd. Newport Beach, CA 92663 Phone: 949-981-5260

Date:

June 2009

TABLE OF CONTENTS

CHAPTE	R 1- DOCUMENT SUMMARY	3
1.1	DOCUMENT PURPOSE AND ORGANIZATION	3
1.2	REGULATORY GUIDANCE	4
1.3	DOCUMENT BACKGROUND	4
1.4	LEAD AGENCY	5
1.5	SUMMARY OF FINDINGS	5
CHAPTE	R 2 - PROJECT DESCRIPTION	7
2.1	PROJECT INTRODUCTION	7
2.2	PROJECT PURPOSE AND NEED	7
2.3	PROJECT AREA BACKGROUND	8
2.4	PROJECT CHARACTERISTICS	9
CHAPTE	R 3 - ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION MEASURES.	13
I.	AESTHETICS	13
II.	AGRICULTURAL RESOURCES	14
III.	AIR QUALITY	15
IV.	BIOLOGICAL RESOURCES	18
V.	CULTURAL RESOURCES	23
VI.	GEOLOGY AND SOILS	24
VII.	HAZARDS AND HAZARDOUS MATERIALS	27
VIII.	HYDROLOGY AND WATER QUALITY	29
IX.	LAND USE AND PLANNING	33
Х.	MINERAL RESOURCES	35
XI.	NOISE	36
XII.	POPULATION AND HOUSING	38
XIII.	PUBLIC SERVICES	38
XIV.	RECREATION	39
XV.	TRANSPORTATION/TRAFFIC	41
XVI.	UTILITIES AND SERVICE SYSTEMS	43
XVII.	MANDATORY FINDINGS OF SIGNIFICANCE	45
CHAPTE	R 4 - REFERENCES	47

LIST OF FIGURES

Figure 1. Location Map

Figure 2. Grading Plan

Figure 3. Typical Tidal Marsh Cross Section

Figure 4. Typical Freshwater Pond Cross Section

Figure 5. Typical Flood Control Conveyance Cross Section

Figure 6. Habitats and Sensitive Species of Big Canyon

Figure 7. Section 404 Wetlands and Waters

Figure 8. California Coastal Commission Jurisdictional Areas

Figure 9. California Department of Fish and Game Jurisdictional Areas

Figure 10. Historic Tidal Wetlands and 100-Year Flood Zone

Figure 11. Conceptual Restoration Plan

LIST OF TABLES

Table 1. Section 404 Jurisdictional Areas and Impacts

Table 2. California Coastal Commission Jurisdictional Areas and Impacts

Table 3. Corresponding Table for Figure 8

Table 4. California Department of Fish and Game Jurisdictional Areas Impacts and Creation

TECHNICAL APPENDICES

- Appendix A. Habitat Restoration Plan and Maintenance Specifications-Big Canyon
- Appendix B. Biological Resources Technical Report
- Appendix C. Essential Fish Habitat Study
- Appendix D. Big Canyon Draft Salt Marsh Bird's Beak Avoidance and Monitoring Plan
- Appendix E. Archaeological Sites of Upper Newport Bay
- Appendix F. Geotechnical Feasibility Report, Big Canyon Creek Restoration, Upper Newport Bay, Newport Beach, County of Orange, California
- Appendix G. Big Canyon Creek Restoration Project, Hydraulic and Structural Calculations Package (Phase 1 & 2)
- Appendix H. Water and Soil Quality Testing Reports
- Appendix I. Monitoring Plan and Quality Assurance Project Plan for Big Canyon Creek Flow and Water Quality Assessment

CHAPTER 1- DOCUMENT SUMMARY

1.1 DOCUMENT PURPOSE AND ORGANIZATION

The purpose of this document is to evaluate the potential environmental effects of the proposed Big Canyon Creek Restoration Project. The Initial Study/Revised Mitigated Negative Declaration (IS/RMND) has been prepared by the City of Newport Beach to evaluate the potential environmental effects of the proposed Big Canyon Creek Restoration Project in Newport Beach, Orange County, California. This document has been prepared in accordance with the California Environmental Quality Act (CEQA), Public Resources Code §21000 *et seq.*, and the State CEQA Guidelines, California Code of Regulations (CCR) §15000 *et seq.* Mitigation measures have been incorporated into the project to eliminate any potentially significant impacts or reduce them to a less-than-significant level.

In addition, the purpose of this document is to allow the City of Newport Beach to determine whether or not to adopt the IS/RMND and to approve the proposed project. This document is organized as follows:

- Chapter 1 Introduction. This chapter provides an introduction to the project and describes the purpose and organization of this document.
- Chapter 2 Project Description. This chapter describes the reasons for the project, scope of the project, and project objectives.
- Chapter 3 Section I-XVI Environmental Setting, Impacts, and Mitigation Measures. This chapter identifies the significance of potential environmental impacts, explains the environmental setting for each environmental issue, and evaluates the potential impacts identified in the CEQA Environmental (Initial Study) Checklist. Mitigation measures are incorporated, where appropriate, to reduce potentially significant impacts to a less than significant level.
- Chapter 3 Section XVII Mandatory Findings of Significance. This chapter identifies and summarizes the overall significance of any potential impacts to natural and cultural resources, cumulative impacts, and impact to humans, as identified in the Initial Study.
- Chapter 4 References. This chapter identifies the references and sources used in the preparation of this IS/MND.

1.2 REGULATORY GUIDANCE

An Initial Study is conducted by a lead agency to determine if a project may have a significant effect on the environment [CEQA Guidelines §15063(a)]. If there is substantial evidence that a project may have a significant effect on the environment, an Environmental Impact Report (EIR) must be prepared, in accordance with CEQA Guidelines §15064(a). However, if the lead agency determines that revisions in the project plans or proposals made by or agreed to by the applicant mitigate the potentially significant effects to a less-than-significant level, a Mitigated Negative Declaration may be prepared instead of an EIR [CEQA Guidelines §15070(b)]. The lead agency prepares a written statement describing the reasons a proposed project would not have a significant effect on the environment and, therefore, why an EIR need not be prepared. This IS/RMND conforms to the content requirements under CEQA Guidelines §15071.

1.3 DOCUMENT BACKGROUND

A Mitigated Negative Declaration (MND) for the Big Canyon Restoration Plan was prepared and adopted by the City of Newport Beach City Council in September 2007. The original MND was based on a 2006 feasibility report prepared by WRC Comments subsequently received during the resource agency Consulting. permitting process raised concerns regarding protection of sensitive habitats and species as well as high levels of selenium in the Project Area. As a result of these comments, the Project has been redesigned to address these concerns. Design modifications have been developed specifically to address potential indirect impacts to the federal and state endangered salt marsh bird's beak (Cordylanthus maritimus ssp maritimus). The berm that currently supports Back Bay Road and that separates the tidal marsh from the existing freshwater marsh will remain intact except for an approximately 50-foot wide opening in the same location as the existing concrete dip crossing to allow tidal flow into the new tidal marsh area. Asphalt from the existing Back Bay Road roadbed will be removed and the remaining dirt berm will be planted with Coastal Sage Scrub species.

Design modifications have also been developed to improve water quality and reduce the amount of selenium entering the Project Area, including a sedimentation pond in the upper (eastern) end of Big Canyon. Finally, the redesigned restoration plan includes a freshwater pond system intended to mitigate for impacts to the existing freshwater marsh. This freshwater pond will be out of the line of Big Canyon Creek flows to avoid further accumulation of selenium in the freshwater system. Impacts to the freshwater marsh will also be mitigated by creation of the upper sedimentation pond and planting of tidal marsh vegetation on the western side of the new Back Bay Road. The Project will be completed in two stages to allow for freshwater marsh habitat development before the existing freshwater marsh is converted to tidal marsh. A Habitat Restoration Plan has been prepared for the proposed project (LSA Associates, 2009) which details the restoration work and planting specifications for the project and is included in Appendix A of this document.

1.4 LEAD AGENCY

The City of Newport Beach is the lead agency for preparation of environmental documentation in compliance with CEQA. The lead agency is the public agency with primary approval authority over the proposed project. In accordance with CEQA Guidelines §15051(b)(1), "the lead agency will normally be an agency with general governmental powers, such as a city or county, rather than an agency with a single or limited purpose." The lead agency for the proposed project is the City of Newport Beach. The contact person for the lead agency regarding specific project information is:

Mr. Mark Reader, Project Manager Public Works Department City of Newport Beach 3300 Newport Blvd Newport Beach, CA 92663 Phone: 949-981-5260 Email: mereader48@sbcglobal.net

Questions or comments regarding this IS/MND should be submitted to:

Mr. Mark Reader, Project Manager Public Works Department City of Newport Beach 3300 Newport Blvd Newport Beach, CA 92663 Phone: 949-981-5260 Email: <u>mereader48@sbcglobal.net</u>

Submissions must be in writing and postmarked or received by fax or email within 30 days of the initial document circulation date. The originals of any faxed documents must be received by regular mail within ten (10) working days following the deadline for comments, along with proof of successful fax transmission. Email or fax submissions must include full name and address.

1.5 SUMMARY OF FINDINGS

Chapter 3 of this document contains the Environmental (Initial Study) Checklist that identifies the potential environmental impacts (by environmental issue) and a brief discussion of each impact resulting from implementation of the proposed project. Based on the IS and supporting environmental analysis provided in this document, the proposed Big Canyon Creek Restoration Project would result in impacts that are less than significant with mitigation related to air quality, biological resources, geology and soils, hydrology and water quality, and noise. The project would result in less-than-significant impacts for the following issues: aesthetics, cultural hazardous materials. land use and resources. planning, recreation. transportation/traffic and utilities and service systems and would have no impact on agricultural resources, mineral resources, population and housing and public services.

In accordance with §15064(f) of the CEQA Guidelines, an MND shall be prepared if the proposed project will not have a significant effect on the environment after the inclusion of mitigation measures in the project. Based on the available project information, and the environmental analysis presented in this document, there is no substantial evidence that, after the incorporation of mitigation measures, the proposed project would have a significant effect on the environment. It is proposed that a Revised Mitigation Negative Declaration be adopted in accordance with the CEQA Guidelines.

CHAPTER 2 - PROJECT DESCRIPTION

2.1 **PROJECT INTRODUCTION**

Big Canyon Creek Restoration Project (Project Area) is located in the City of Newport Beach, Orange County, California (Figure 1-Location map). Big Canyon Creek Watershed covers approximately 1,280 acres and drains directly into Upper Newport Bay. The creek flows from southeast to northwest through the 60-acre Big Canyon Creek Nature Park, ultimately draining into Upper Newport Bay. The lower portion of Big Canyon is within the Upper Newport Bay State Ecological Reserve. Big Canyon is the only natural, undeveloped portion of the Big Canyon Creek watershed, and the only significant remaining natural canyon on the east side of Newport Bay.

2.2 PROJECT PURPOSE AND NEED

Natural tidal flow into Big Canyon was impeded in the mid-1900s with the construction of Back Bay Drive and placement of dredged materials from Upper Newport Bay, both of which effectively created a barrier and eliminated more than five acres of tidal wetlands. There has been significant habitat degradation throughout the canyon due to decades of dredged fill, invasive non-native plants from surrounding developed areas, erosion, and lack of a comprehensive plan. Dredged materials placed in Big Canyon have resulted in large areas of saline and infertile soils, which cannot support native plant communities. A freshwater pond was constructed in the early 1980s but is now a very shallow marsh filled with sediment. The pond water is characterized by temperatures too high to support native aquatic animal populations.

Newport Bay is listed as an impaired water body under the federal Clean Water Act (CWA) due to the high levels of constituents of concern flowing into the Bay including high levels of selenium. Unfiltered urban runoff carried by Big Canyon Creek is a water quality issue having potential negative impacts on Upper Newport Bay and the nearly 500 species of animals, fish and plants that reside in the Bay.

The Big Canyon Nature Park has been heavily used by local communities for passive recreation and by the Orange County Department of Education for outdoor education. It is an integral part of the Upper Newport Bay ecological preserve and provides unique opportunities for the public to learn about the diversity of biological resources and environmental protection within a short walking distance.

The project intends to achieve the following objectives:

- Restore historic tidal marsh habitat
- Preserve, restore and create habitat for special status species
- Improve water quality by reducing the level of selenium flowing into the Bay
- Reduce flood/erosion/sedimentation damage

• Encourage public participation and provide education

2.3 PROJECT AREA BACKGROUND

The Project is located between Jamboree Road and Back Bay Drive, approximately one mile north of Coast Highway along the east shore of Upper Newport Bay. The Project Area occupies a 60-acre area that consists of a nature park bounded by residential developments on bluffs to the north and south. The Project Area is bounded by Upper Newport Bay to the west and Jamboree Road to the east. A small parking lot, information kiosk, and Upper Newport Bay are located west of Back Bay Drive within the tidal zone. Land uses vary within and adjacent to the Project Area and include residential areas, golf courses, paved and unimproved roads, power lines, and commercial developments. Relatively undisturbed natural areas associated with the Upper Newport Bay Ecological Reserve are present within and to the north, south, and west of the Project Area.

The Project Area is characterized topographically by steeply sloping bluffs and a narrow moderately sloped floodplain; slopes range in elevation from 20 to 75 feet above mean sea level (msl) and the canyon creek ranges in elevation from below mean sea level to 25 feet msl. A perennial stream area is present within the Project Area and supports riparian species. An artificial dam and freshwater pond are located east of Back Bay Drive.

Many of the existing plant communities are fragmented, discontinuous, and threatened by invasive weeds such as Brazilian peppertree (*Schinus terebinthifolius*) and myoporum (*Myoporum laetum*). Native plant communities in the upper part of Big Canyon include arroyo willow scrub, alkali meadow, freshwater marsh, and sagebrush scrub. The lower (western) portion of the canyon is dominated by a large area of freshwater marsh, along with cottonwood-willow riparian forest, alkali meadow, brackish marsh, mulefat scrub, alkali grassland, chenopod scrub, coyote brush scrub, and sagebrush scrub. The canyon slopes contain areas of coastal bluff scrub and coyote brush scrub.

The tidal wetlands on the bayside of Back Bay Drive are dominated by saltmarsh, with smaller areas of alkali grassland, alkali meadow, alkali marsh, brackish marsh, mulefat scrub and sagebrush scrub along the edges of the roadway. Mudflats and shallow tidal channels are present in Upper Newport Bay.

Big Canyon provides habitat for protected plant and wildlife species. A large population of the federally endangered (FE) and state endangered (SE) salt marsh bird's beak (SMBB; *Cordylanthus maritimus* ssp., *maritimus*) is present at the mouth of Big Canyon Creek in salt marsh and sandy flats. Big Canyon also presently provides habitat for the California Native Plant Society (CNPS) List 1.B Southern tarplant (*Hemizonia parryi* spp. *australis*), Southwestern spiny rush (*Juncus acutus* spp. *leapoldii*, CNPS List 4), California boxthorn (*Lycium californicum*, CNPS List 4), Estuary seablite (*Suaeda esteroa*; CNPS List 1B), Woolly seablite (*Suaeda taxifolia*; CNPS List 4), Beldings savannah sparrow (*Passerculus sandwichensis*; ST), California brown pelican (*Pelicanus occidentalis*; FE, SE), Light-footed clapper rail (*Ralius longirostris levipes*; FE, SE), California least tern (*Sterna antilarum browni*; FE, SE), and Coastal California gnatcatcher (*Polioptila californica californica*; FT, CSC). A Technical Biological Report has been prepared for the property (Keane Biological Consulting, 2004) which describes the habitats and species associated with the project site. The biological report is included in Appendix B.

2.4 **PROJECT CHARACTERISTICS**

The Location Map, Grading Plan (Figure 2), and Project Cross Sections (Figures 3-5) are attached for reference. The Big Canyon Creek Restoration Project will occur in two phases. The first phase is slated to begin in September, 2009 and last through February, 2010. The second phase will occur from September, 2010 through February, 2011.

The following work is proposed for the first phase:

• Freshwater pond: An approximately 2-acre freshwater pond is planned adjacent to Big Canyon Creek. The pond will replace an existing freshwater pond that will be filled for the realignment of Back Bay Drive to restore historic tidal marsh. The new pond will be lined with a 40-milliliter PVC plastic liner and have a potable water source via a supply water line connection to a 16-inch municipal water line in Jamboree Road. The pond will be hydrologically separated from Big Canyon Creek in order to prevent selenium-laden creek flows and soil from contaminating it. Approximately 47,310 cubic yards (4.35 acres) of material will be excavated and 34,650 cubic yards (2.29 acres) of fill material will be used to create the freshwater pond. About half of the perimeter of the freshwater pond will contain a shallow bench to support marsh planting. An island in the center of the pond will be planted with riparian and wetland plants and will provide opportunities for western pond turtle (*Actinemys marmorata pallida*) basking.

The freshwater pond will require minimal maintenance including sediment/organic matter removal and vector control as needed. Maintenance activities will also take place as needed to ensure that the circulation and aeration devices are functioning properly.

• Interpretive area pad: A rough-graded pad will be created at the interpretive area for construction staging. The interpretive area access road will also be rough graded to provide construction access to the freshwater pond grading area.

• Access road from Jamboree Road: An access road will be built at the north end of the Project Area. The access road will be 15 feet wide. A 15-foot wide maintenance road running along the cliff side of the proposed pond from the interpretation area and connecting the existing maintenance road will also be created. A 10-foot wide trail will be built between the proposed freshwater pond and flood conveyance control along with a six-foot wide minor trail along the northerly side of the flood conveyance near the riparian spillway.

The following work is proposed for the second phase of the project and is described in full detail in Appendix A of this document:

- Regrading Big Canyon Creek: Approximately 40,635 cubic yards (4.29 acres) of material will be excavated and 12,515 cubic yards (0.72 acre) of fill used to regrade Big Canyon Creek. The new flood control conveyance channel will be approximately 140 feet wide with a minimum depth of nine feet and a maximum depth of 16 feet. The longitudinal channel slope will be graded to two percent and the side slopes will be at a 2:1 ratio. The channel bed and banks substrate will be native soil and native riparian woodland species will be planted along the broad flood plain and up the channel banks.
- Restoration of historic tidal marsh and Back Bay Drive realignment: The • historic tidal wetlands at the mouth of Big Canyon Creek will be restored by dredging and realigning the existing Back Bay Drive inland along the historic extent of tidal marsh. The existing Back Bay Drive berm will be left in place to protect existing populations of salt marsh bird's beak, but the asphalt and concrete associated with the road and parking lot will be removed. The existing berm and restored paving area will be planted with coastal sage scrub vegetation. Back Bay Drive will be realigned to the vicinity of the historical tidal inundation boundary, which is approximately 500 feet from the existing road at the maximum inland extent. To avoid flow concentration and provide better transition from tidal marsh to Big Canyon Creek, a series of four culverts, each approximately 5 feet high and 10 feet wide and 63 feet long, is planned under the realigned Back Bay Drive. The new road will maintain the same width for pavement of 20 feet following the alignment of the existing maintenance road and trail dike. The length of road will increase from 1,000 to 1,620 linear feet for the improved reach. Approximately 2.93 acres of existing freshwater marsh will be impacted by realigning Back Bay Drive and restoring the tidal marsh.

Approximately 107,400 cubic yards of soil will be excavated (6.46 acres) and 63,100 cubic yards (5.32 acres) of fill will be required to realign Back Bay Drive and restore the tidal marsh. As a result, approximately 3.6 acres of additional salt marsh habitat will be created, including low marsh, high marsh, and mud flat. Salt marsh plantings will be installed in the newly created habitat. The restored tidal marsh will improve the transition between freshwater and saltwater habitat, enhance habitat for benthic invertebrates, and increase habitat diversity and complexity.

Restoration of the tidal marsh will substantially increase benthic biological productivity as a consequence of the introduction of tidal creeks, mudflats, salt marsh habitat, and transitional brackish water connecting the tidal habitats. Invertebrate species likely to colonize the area will be similar in species composition to that which occurs along the existing mudflats and tidal channels in the vicinity of Big Canyon. These species are likely to include opportunistic species such as polychaetes (*Polydora nuchalis, Streblospio benedicti* and *Polydora cornuta*), oligochaetes, and amphipods (*Grandidierella japonica* and *Monocorophium acherusicum*). Larger tidal marsh and mudflat marsh invertebrates will include California horn snails (*Cerithidea californica*), yellow shore crabs (*Hemigrapsus oregonensis*), and fiddler crabs (*Uca crenulata*).

- Freshwater marsh creation: At the downstream end of the flood conveyance channel, a shallow freshwater marsh will be created. The marsh will be planted with rush and wetland grass species. The restored freshwater marsh habitat is expected to support dragonflies, raccoons, and a variety of invertebrates, amphibians, and birds. Amphibians that may use the marsh and associated freshwater aquatic habitat include Pacific treefrog and western pond turtle. Bird species relying on the freshwater marsh habitat may include pied-billed grebe (*Podilymbus podiceps*), great blue heron (*Ardea herodias*), snowy egret (*Egretta thula*), mallard (*Anas platyrhynchos*), American coot (*Fulica americana*), greater yellowlegs (*Tringa melanoleuca*), song sparrow (*Melospiza melodia*), and redwinged blackbird (*Agelaius phoeniceus*).
- Access trails, roadways, parking, and interpretive center: The project is intended to enhance public use and educational opportunities as well as provide coordinated trail access and interpretive signage. Included in the plan are trails, roadways, parking, and interpretive areas. The components of the plan were identified to meet public and interpretive education needs to the greatest extent possible while not impacting restoration goals or practical considerations (e.g., access to sewer line for necessary maintenance).

The existing parking lot (24,000 square feet and 35 parking stalls) and restroom facilities (2 to 4 portable toilets) will be moved out of the sensitive tidal wetlands area and relocated to the existing disturbed area between the previously mitigated and enhanced coastal sage scrub and the degraded freshwater marsh. The proposed parking will have capacity similar to that of the existing parking (36 stalls). Additionally, there will be six overlook areas along the trail and roads as rest stops where visitors can observe key natural features of the restored canyon and watch birds. Materials excavated during tidal marsh restoration and other activities will be reused at the central interpretive area to the maximum extent possible.

During the two phases of the project, new planting and removal of invasive exotic species under the restoration project will facilitate restoration of tidal marsh, freshwater marsh, riparian and upland habitats. Dense infestations of Brazilian peppertree and myoporum and other invasive exotic species will be removed in riparian, coastal sage scrub and alkali meadow habitats. Spot removal of exotic species will be applied to portions of woodland, riparian scrub, and coastal sage scrub with less dense infestations. Native vegetation will be planted in place of the removal exotic species.

Approximately 5.6 acres of riparian habitat will be impacted by this project largely as the result of creating the freshwater pond. However, approximately 7.1 acres of new riparian will be created, providing a net increase of 1.5 acres of riparian habitat resulting from this restoration project.

CHAPTER 3 - ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION MEASURES

I. AESTHETICS

Environmental Setting

The Project Area provides great views of Upper Newport Bay and tidal flats, freshwater marsh, and coastal bluffs. Views and aesthetics will be further enhanced with the proposed project.

IMPACT Would the project:	POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u>
a) Have a substantial adverse effect on a scenie	c vista?			\boxtimes
 b) Substantially damage scenic resources, inclubut not limited to, trees, rock outcroppings, an historic buildings within a state scenic highway 	iding, 🗌 nd ay?		\boxtimes	
c) Substantially degrade the existing visual char or quality of the site and its surroundings?	racter		\boxtimes	
 d) Create a new source of substantial light or gl which would adversely affect day or nighttime in the area? 	are 🗌 e views			\boxtimes

Discussion

- a) The proposed project would not impact scenic vistas. Restoration activities proposed for the project would in the long-term improve the visual character of the area. Scenic overlooks at the north edge of the restored tidal wetlands, on the new berm at Back Bay Drive, at the southern end of the new freshwater pond and at the upper end of the freshwater pond would provide views of the restored canyon.
- b,c)The Project Area is located approximately one mile north of Coast Highway. Relatively undisturbed natural areas associated with the Upper Newport Bay Ecological Reserve surround the Project Area to the north, south, and west. Temporary impacts to views of these surrounding scenic resources during restoration activities would be less than significant due to their limited duration.
- d) The proposed project would not create a new source of substantial light or glare. No additional lighting is proposed as part of the Project.

Mitigation Measure Aesthetics:

None Required

II. AGRICULTURAL RESOURCES

Environmental Setting

The proposed Project is located within an urbanized area consisting of a nature park bounded by residential developments, golf courses, commercial developments and the Upper Newport Bay Ecological Reserve. The Project Area does not contain any farmlands.

IMPACT WOULD THE PROJECT*:	POTENTIALLY SIGNIFICANT IMPACT	SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u>
a) Convert Prime Farmland, Unique Farmland, Farmland of Statewide Importance (Farmland shown on the maps prepared pursuant to the Mapping and Monitoring Program of the Cali Resources Agency, to non-agricultural use?	or 🗌 d), as e Farmland fornia			
 b) Conflict with existing zoning for agricultural u a Williamson Act contract? 	ise or			\boxtimes
 c) Involve other changes in the existing environ which, due to their location or nature, could r conversion of Farmland to non-agricultural u 	ment esult in se?			\boxtimes

*In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997), prepared by the California Department of Conservation as an optional model for use in assessing impacts on agricultural and farmland.

Discussion

a, b, c) The proposed Project would not convert prime farmland, unique farmland, or farmland of statewide importance. The Project would also not conflict with existing zoning for agicultural use or a Williamson Act contract, or result in the conversion of any Farmland to non-agricultural uses. No impacts would occur.

Mitigation Measure Agricultural Resources:

• None Required

III. AIR QUALITY

Environmental Setting

The South Coast Air Quality Management District (SCAQMD) governs air quality in the South Coast Air Basin, which includes Orange County and portions of Los Angeles, Riverside and San Bernardino Counties. Air pollution is significant in this region due to high population density (approximately 15 million people), and tends to stagnate within this basin due to natural barriers, such as mountains. SCAQMD has a comprehensive strategy for reducing air pollution from all sources to compliance with federal and state health-based standards.

Ambient air monitoring data indicate that the South Coast area is currently in nonattainment status for two of six criteria air pollutants listed in the Clean Air Act: ozone (8-hour standard) and small particulate matter ($PM_{2.5}$). The remaining criteria air pollutants are carbon monoxide (CO), nitrogen dioxide (NO_2), sulfur dioxide (SO_2), and lead. SCAQMD has attained federal and state standards for all these pollutants, as well as for larger particulate matter (PM_{10}^{10}).

Wou		POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
100			_	_	_
a)	Conflict with or obstruct implementation of the applicable air quality plan or regulation?				\bowtie
b)	Violate any air quality standard or contribute substantially to an existing or projected air quality violation?	,			
c)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project regio is in non-attainment under an applicable federal of state ambient air quality standard (including relea emissions which exceed quantitative thresholds for ozone precursors)?	e on or sing or			
d)	Expose sensitive receptors to substantial pollutar concentrations (e.g., children, the elderly, individu with compromised respiratory or immune systems	nt 🔲 uals s)?			
e)	Create objectionable odors affecting a substantia number of people?	I 🗌			\boxtimes

*Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied on to make these determinations.

Discussion

- a) The Project will not conflict with or obstruct implementation of any applicable air quality plans or regulations. The project area is governed by the Southern California Air Quality Management Plan. The region currently exceeds standards for ozone and PM_{2.5}. The most significant sources of these pollutants are vehicle and other mobile source emissions. This Project will restore a degraded tidal wetland and creek watershed area for ecological value and public use. The functioning of this natural area will not generate air emissions nor obstruct implementation of air quality plans.
- b) The South Coast region is currently in violation of air quality standards for ozone and PM2.5, and is anticipated to reach attainment in 2010. The Project is not expected to result in significantly increased air emissions during operations. During construction and restoration operations, dust resulting from vehicle travel and fuel combustion from vehicles may cause locally increased levels of particulate matter. Approximately 75,000 cubic yards are expected to be excavated and 50% of this amount (40,000 cubic yards) will need to be hauled off during the creation of the tidal wetlands. Removal of dredge material is expected to begin in 2009 and will take approximately 125 days per year for two years. These materials are to be disposed of at Frank R. Bowerman Landfill at 11002 Bee Canyon Access Road, Irvine, CA, approximately 15 miles from the Project Area. The haul route will be from the site to Bee Canyon Access Road via Jamboree Road, Ford Road/Bonita Canyon Road, University/Jeffrey Road, and Portola Parkway. Approximately 20 cubic yards of material would be hauled per truck, eight truck trips per day in average. This may yield approximately 0.24 lb PM2.5 emitted per day (SCAQMD 2007) in average for the duration of the removal process.

As an alternative to 125 days of work conducted each year for two years, excess material may be removed during a shorter duration. Additionally, transportation of other construction materials may occur; therefore it is necessary to define maximum truck traffic allowance per day in the construction specifications. For 40 truck trips per day maximum, the maximum daily PM2.5 emission level may be increased to 1.20 lb/day. This value is significantly less than 760 lb/day which is the average PM2.5 emission level for heavy diesel trucks across Orange County, (CARB 2006). Based on this analysis, potential emissions from truck traffic associated with this project would represent insignificant sources of pollutant contributing to the overall PM2.5 emissions. Nonetheless, because the South Coast airshed is a nonattainment area for PM2.5, mitigation should be employed to minimize particulate emissions during construction (MMAQ-1). (SCAQMD 2003, SCAQMD 2007, California Air Resources Board 2006).

c) The Project is not expected to result in a cumulatively considerable net increase in air emissions during operations. However, construction may cause locally increased dust emissions from vehicle travel, as discussed in b) above. The South Coast area is a nonattainment area for PM_{2.5}, and therefore mitigation measure should be employed to minimize particulate emissions (MMAQ-1).

- d) The Project will not expose sensitive human receptors to substantial pollutant concentrations. There are no residences in Big Canyon, and best management practices will be used to curtail locally increased dust levels resulting from construction, so there will be minimal off-site transfer of particulate matter from the site.
- e) The Project will not create objectionable odors impacting a substantial number of people. There are no residences within the Big Canyon area, and odor emissions will not be changed after implementation of the restoration project.

Mitigation Measures Air Quality:

MMAQ-1:

- Best management practices (BMPs) shall be employed to minimize dust emissions from vehicle travel during site restoration. Dust control BMPs shall include the following:
 - Cover all trucks hauling soil and other loose materials or require all trucks to maintain at least two feet of freeboard.
 - Roadways shall be watered down to reduce dust emissions and vehicle trips to and from the site shall be minimized.
 - Remove loose soil from truck surfaces before leaving the Project Area.
 - Limit traffic speeds on unpaved roads to 15 mph.
 - Suspend excavation and grading activity when winds exceed 25 mph.
 - Minimize idling time.
 - Maintain properly tuned equipment.
 - Limit the hours of operation of heavy-duty equipment and/or the amount of equipment in use.

As part of the BMPs, construction activities shall comply with all applicable SCAQMD rules and regulations from the 2007 "Air Quality Analysis Guidance Handbook", which is currently being developed to replace the 1993 Handbook.

IV. BIOLOGICAL RESOURCES

Environmental Setting

Habitats present within the Project Area were identified and mapped as part of the Phase I study for the project (Figure 6) and are fully described in Appendix B of this Initial Study. Forty-two native plant communities are present in the Project Area. Many of these communities are fragmented, discontinuous, and threatened by invasive plants such as Brazilian peppertree and lollipop tree. Native plant communities in the upper part of Big Canyon include arroyo willow scrub, alkali meadow, freshwater marsh, and sagebrush scrub. The lower (western) portion of the canyon is dominated by a large area of freshwater marsh, along with cottonwood-willow riparian forest, alkali meadow, brackish marsh, mulefat scrub, alkali grassland, chenopod scrub, coyote brush scrub, and sagebrush scrub. The canyon slopes contain areas of coastal bluff scrub and coyote brush scrub.

The tidal wetlands on the bayside of Back Bay Drive are dominated by saltmarsh, with smaller areas of alkali grassland, alkali meadow, alkali marsh, brackish marsh, mulefat scrub and sagebrush scrub along the edges of the roadway. Mudflats and shallow tidal channels are present in Upper Newport Bay. A freshwater marsh, riparian areas, and stream channel occur on the project site.

The existing freshwater marsh was created in the early 1980's as part of mitigation for impacts proposed for the Back Bay Trunk Sewer project (K.P. Lindstrom, Inc., 2000). This freshwater marsh, dominated by freshwater emergent vegetation, was intended to mitigate for impacts to habitat used by Light-footed Clapper Rail (*Ralius longirostris levipes*; FE, SE, State Fully Protected) (D. Villines, pers. comm. 2009). Research since the early 1980's has documented salt marsh dominated by cordgrass (*Spartina* sp.) as the preferred foraging and nesting habitat (Natureserv 2009)

Wetlands, waters, riparian areas and other sensitive habitats that are subject to jurisdiction by the Corps of Engineers, the City of Newport Beach Local Coastal Program (LCP), California Coastal Commission (CCC), and the California Department of Fish and Game (CDFG) have been identified by these resource agencies. The Project Area contains approximately 13.90 acres of wetlands and 5.80 acres of "other waters" under U.S. Army Corps of Engineers jurisdiction through Section 404 of the federal Clean Water Act (Figure 7, Table 1). Approximately 11.81 acres of wetlands and 1.66 acres of open waters as defined by the City of Newport Beach LCP, and under the jurisdiction of the CCC, occur in the Project Area (Figure 8, Table 2). Fifteen unique habitat types under CDFG jurisdiction occur in Big Canyon (Figure 9, Table 3), and Tables 1-3 show the habitat type and acreage of each agency's specific jurisdiction. Approximately 15.13 acres of coastal sage scrub habitat, which is an environmentally sensitive habitat area (ESHA) according to the City of Newport Beach LCP, is also present in the Project Area.

Several federally listed plant and avian species associated with wetland and salt marsh habitats have been observed or have a high potential to occur within the Project Area. Patches of salt marsh bird's beak (*Cordylanthus maritimus* ssp. *maritimus*; FE, SE) occurs in salt marsh near the mouth of Big Canyon. With 30,000 individuals counted in 2003, Big Canyon has the most significant population in Southern California. Five additional special status plant species occur within the Project Area: southern tarplant (*Hemizonia parryi* spp. *australis*; CNPS List 1B), California boxthorn (*Lycium californicum*; CNPS List 4.2), southwestern spiny rush (*Juncus acutus* ssp. *leopoldii*; CNPS List 4.2), estuary seablite (*Suaeda esteroa*; CNPS List 1B), and woolly seablite (*Suaeda taxifolia*; CNPS List 4.2).

The Coastal California Gnatcatcher (*Polioptila californica californica*; FT) has been observed in saltbrush scrub habitat. The Light-footed Clapper Rail has been observed in cordgrass dominated habitats and Beldings Savannah Sparrow (*Passerculus sandwichensis beldingi*; ST, State Fully Protected) has been observed in pickleweed habitat within the Project Area. In addition, the California Brown Pelican (*Pelicanus occidentalis*, FE, SE) was observed foraging in channels west of the salt marsh in Upper Newport Bay and California least tern (*Sterna antilarum browni*, FT) was observed foraging in tidal water areas near the Project Area. Neither species has been observed within the Project Area.

	POTENTIALLY SIGNIFICANT IMPACT	<u>SIGNIFICANT</u> <u>WITH</u> <u>MITIGATION</u>	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
WOULD THE PROJECT:				
a) Have a substantial adverse effect, either directly of through habitat modification, on any species identified as a sensitive, candidate, or special state species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or the U.S. Fish and Wildlife Servi	r 🗌 us ce?			
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identi in local or regional plans, policies, or regulations, o by the California Department of Fish and Game or the U.S. Fish and Wildlife Service?	fied or			
c) Have a substantial adverse effect on federally protected wetlands, as defined by §404 of the Clea Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?	an			
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?				
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?				\boxtimes

 f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Discussion

a) In 2004, Keane Biological Consulting (KBC) conducted surveys for rare species with potential to occur within the Project Area (Appendix B). There are six special status plant species that were observed or are expected to occur in the Project Area and twelve species that are present in Upper Newport Bay and therefore could potentially occur at Big Canyon. Eleven special status bird species were observed within the Project Area and ten bird species have potential to occur. Two herpetological species have potential to occur and one special status insect species was observed. Twenty additional insect species have potential to occur within the Project Area. Mitigation measures have been established for those species impacted during restoration construction (see Mitigation Measure Biological Resource-1 [MMBR-1] and MMBR-4).

- b) Approximately 5.57 acres of native riparian habitat will be impacted by the restoration project, including arroyo willow scrub, cottonwood willow and non-native riparian forest in the northwest and central portion of the Project Area. The black willow riparian forest in the southeastern portion of Big Canyon will not be impacted as a result of the project. Of the 15.13 acres of coastal sage scrub found in the Project Area, approximately 1.22 acres will be permanently impacted. Riparian habitats are considered sensitive and protected through the LCP, CCC, and CDFG, and coastal sage scrub habitats are protected through the LCP and CDFG. (see MMBR-2).
- c) This restoration project includes permanently filling 0.49 acres of seasonal wetland, 5.34 acres of freshwater marsh, 0.02 acres of salt marsh and 1.66 acres of waters under Section 404 jurisdiction as a result of the Back Bay Road realignment, non-native plant removal, and grading in stream, pond, and marsh areas for their conversion to salt marsh or pond habitat. An overall decrease of 1.63 acres of freshwater marsh would occur as a result of the project.

The project would permanently fill 5.38 acres of freshwater marsh, 0.52 acres of seasonal wetlands, 3.83 acres of riparian, 0.02 acres of salt marsh, 2.06 acres of non-native riparian habitat, as well as 1.66 acres of open water subject to LCP and CCC policies. (see MMBR-3)

 \boxtimes

d) Removal of riparian habitat would occur as a result of the relocation of Back Bay Road, the creation of the open water pond above the new road, and construction of a diversion berm and new sediment basin at the east end of the canyon. The removal of riparian habitat may interfere with the movement of wildlife species (see MMBR-4).

No part of the Project would permanently impact migratory fish species populations. Construction activities may generate debris or sediment that could enter Newport Bay (Coastal Resources Management, Inc. July 2008, Appendix C) (see MMBR-4).

e,f) The proposed Project would not conflict with protection of biological resources under the City of Newport Beach LCP Coastal Land Use Plan (as Adopted December 13, 2005). The proposed tidal marsh restoration would serve to enhance and restore marine resources. The biological productivity and the quality of coastal waters, tidal marsh, Big Canyon Creek, and wetlands would be enhanced and restored. The proposed Project would control runoff, maintain natural vegetation buffer areas that protect riparian habitats and provide erosion control to protect Big Canyon Creek. The proposed Project would protect ESHAs against significant disruption of habitat values by carefully controlling public use. Recreation, interpretation and educational areas are designed to prevent impacts to environmentally sensitive habitats through their proposed siting on currently disturbed or paved soils. The Project would not conflict with the provisions of any local policies and ordinances.

Mitigation Measures Biological Resources:

MMBR-1:

- The restoration of the Project Area would create native transitional and wetland habitats, which would increase the nesting and foraging habitats for wildlife species. The restoration of native habitats would also improve habitat for special status plants. Impacts to special status species may occur during the construction of the restored creek.
 - Project construction will be limited to the non-breeding period for sensitive wildlife, generally between September 1st to February 15th. However, should work be conducted outside this period, a qualified biologist will conduct preconstruction surveys within two weeks prior to the commencement of construction to verify the presence or absence of birds, including raptors, passerines, and their nests. If the survey indicates the potential presence of nesting raptors or protected passerines, construction workers will adhere to CDFG avoidance guidelines, which are typically a minimum 500-foot buffer zone surrounding active raptor nests and a 250-buffer zone surrounding nests of other birds.

Populations of *Cordylanthus maritimus* ssp. *maritimus* within 100 feet of project construction will be marked and construction fencing will be erected to protect these areas during construction. A seed collection and monitoring program has been developed, and additional mitigation and avoidance measures are described in the Salt Marsh Bird's Beak Avoidance and Monitoring Plan (WRA, Inc 2009, Appendix D). No take of this species is anticipated with the project.

MMBR-2:

• Approximately 7.13 acres of riparian willow scrub and woodland will be restored and enhanced through removal of invasive exotic plant species. A net increase of 1.47 acres of native riparian habitat will occur as a result of the Project. Native riparian species will be planted and seeded in areas that are opened up with the removal of exotic species. A mix of each canopy layer will be planted. Specific placement of species will depend on soil and hydrologic conditions. In addition, 2.28 acres of coastal sage scrub habitat will be created or restored with the implementation of this project, for a net increase of 4.97 acres of this habitat type.

MMBR-3:

Approximately 2.19 acres of waters, 1.30 acres of freshwater marsh and • 3.58 acres of salt marsh would be created as a result of the Project, for a net increase of 0.62 acres of waters and 3.57 acres of salt marsh. Wetland and open water creation and restoration will increase acreage of important sensitive habitats under the Corps and CCC jurisdiction. Although a net loss in freshwater marsh would occur as a result of the proposed project, freshwater marsh is not an historic habitat type for local aquatic ecosystems and the existing freshwater marsh has been implicated in bioaccumulation of toxic substances in aquatic wildlife in Big Canyon (Community Conservancy International 2004). Relocating the freshwater marsh offline from the creek flows will improve water quality for marsh species, and creation of more salt marsh habitat will encourage establishment of the historic tidal marsh ecosystem. Wetlands will be restored and enhanced through improving drainage and planting native wetland species.

MMBR-4:

• Restoration of the riparian habitats will improve habitat and water quality for wildlife species and restore migratory corridors within the Project Area. Best Management Practices (BMPs), such as deploying sand bags and silt curtains at appropriate locations during construction, will be implemented to protect fish species in Newport Bay.

V. CULTURAL RESOURCES

Environmental Setting

The Project Area is in an area of known resources according to the Archaeological Sites of Upper Newport bay (Archaeological Research Inc., 1976) (Appendix E). A resource site does exist on the landward side of the road at the base of the bluff near Big Canyon.

	<u>P</u>	OTENTIALLY SIGNIFICANT IMPACT	SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Wou	D THE PROJECT:				
a)	Cause a substantial adverse change in the significance of a historical resource, as defined in §15064.5?				
b)	Cause a substantial adverse change in the significance of an archaeological resource, pursuant to §15064.5?		\boxtimes		
c)	Directly or indirectly destroy a unique paleontologica resource or site or unique geologic feature?	1			\boxtimes
d)	Disturb any human remains, including those interred outside of formal cemeteries?				\boxtimes

Discussion

- a, b, c) The resource site would be fenced so that there will be no trespassing or construction in this area. The Project will have no impact on known archaeological/paleontological resources. (See MMCR-1).
 - d) No known human remains, including those interred outside of formal cemeteries would be disturbed by the Project.

Mitigation Measures Cultural Resources:

MMCR-1:

 An archaeological observer will be present during excavation to inspect the materials. If a significant resource is found, contract provisions will be made to halt construction for three days to facilitate resource removal.

VI. GEOLOGY AND SOILS

Environmental Setting

Surface materials at the Project Area generally consist of dredged fill which is typically silty sand. Native site material contains sandy clay. The deposition of dredge materials in Big Canyon combined with the construction of Back Bay Drive have apparently modified the topographic features of the canyon and influenced the establishment of both native and non-native plant communities. The specific chemistry and soil characteristics of the dredge spoil locations have created large infertile areas and areas dominated by exotic species. A Geotechnical Feasibility Report has been prepared by GeoSoils, Inc. (2006) and is included in Appendix F of this Initial Study.

Wou	LD THE PROJECT:	POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
a)	Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:				
i)	Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? (Refer to Division of Mines and Geology Special Publication 42.)				
ii)	Strong seismic ground shaking?			\boxtimes	
iii)	Seismic-related ground failure, including liquefaction?				\boxtimes
iv)	Landslides?				\boxtimes
b)	Result in substantial soil erosion or the loss of topsoil?		\boxtimes		
c)	Be located on a geologic unit or soil that is result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?				
d)	Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?				
e)	Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?				\boxtimes

Discussion

- a) The Project Area is located in the City of Newport Beach. There are a number of faults in the southern California area which are considered active and will have an effect on the Project Area in the form of moderate to strong ground shaking, should they be the source of an earthquake.
 - The Project Area is not located within an Alquist-Priolo Earthquake Fault Zone. No known active or potentially active faults are shown crossing the Project Area on published maps. No evidence for active or potentially active faulting was encountered during the onsite geotechnical evaluation (GSI 2006, Appendix F).
 - ii) Based on analyses by GeoSoils, Inc. (GSI 2006, Appendix F) historical seismic activity in the area surrounding the proposed Project shows that the largest earthquake magnitude within a 100-mile radius of the Project Area between 1800 and 2006 was 7.6. The Project Area would be subject to varying groundshaking intensities in the event of an earthquake on any of the potentially active faults in the region. The proposed Project includes facilities such as restrooms and an outdoor seating area. These structures could be damaged in the event of an earthquake (see MMGS-1).
 - iii) Liquefaction, a secondary earthquake-induced hazard, occurs when water-saturated soils lose their strength and liquefy during intense and prolonged groundshaking. According to analyses by GeoSoils, Inc. (GSI 2006, Appendix F), areas within the middle of the canyon have liquefaction potential in the Seismic Hazard Zone. The hazards known to influence liquefaction potential include soil type and grain size, relative density, groundwater level, confining pressures, and both intensity and duration of ground shaking.
 - iv) The Project Area does not contain any existing landslide hazards.
- b) During Project construction, excavation and grading will be required. Construction is likely to occur in and near the water due to habitat impact restrictions (March to August). An Erosion Control Plan will be included in the Construction Stormwater Pollution Prevention Plan (SWPPP) and implemented at the onset of the construction to avoid temporary erosion caused by rainstorms. The contractor will provide a surface flow control plan to avoid erosion for approval prior to construction.

The Proposed Project involves beneficial changes to creek topography, including creation of ponds and modification to Back Bay Drive and tidal marsh. This will result in a more stable channel condition and reduce erosion potential as summarized below. Supporting hydraulic calculations are provided in the "Big Canyon Creek Restoration Project, Hydraulic and Structural Calculations Package (Phase 1 & 2)" dated May 2009. (VA Consulting 2009, Appendix G).

The north channel, which is currently subject to severe erosion, will have lesser flows and lower velocities during high flow events due to reduction in the trail dike length. Additionally, the channel will only receive overtopping flows from the south channel and high stormwater flows will be reduced and retarded from the new channel design.

Back Bay Drive will have relatively higher elevations compared to the 100-year flood level. Drainage culverts will be much wider than the existing weir and pipe culverts to avoid flow concentration and reduce scour potential.

The aquatic habitat created above the service road crossing, partially by fill at the service road (embankment) and partially by excavation, will maintain similar hydraulic features as the existing condition – as described in the hydraulic calculations report (VA Consulting 2009, Appendix G). Therefore, no negative impacts on channel stability and erosion/sedimentation will result from the construction of these features (see MMGS-2).

- c) The canyon slope near the central gathering area has been identified as potentially unstable; however, Project elements will be placed with sufficient setback (20 feet at minimum) and will not cause any impact to the slope stability. No active fault zones exist in the area (Geosoils 2006, Appendix F). With only minor, temporary alterations to site topography resulting from Project construction, no impacts to unique geologic features will occur.
- d) The Project Area contains previously dredged materials from Upper Newport Bay and may contain expansive soils.
- e) The Proposed Project does not include septic tanks or alternative waste disposal systems. As such, there is no potential for soil failure associated with the installation of septic tanks or alternative waste disposal systems.

Mitigation Measures Geology and Soils:

MMGS-1:

 Proposed facilities will be designed in accordance with the most recent California Building Code requirements for seismic activity or more stringent local building code provisions.

MMGS-2:

 Soil loss prevention will be provided through the implementation of the erosion control plan and surface flow control plan, as described under Mitigation Measure Hydrology and Water Quality -2.

MMGS-3:

A licensed geotechnical engineer has prepared a foundation recommendation report (Geosoils, 2006) for roadways and minor structures, such as overlooks and the outdoor seating area. A registered civil engineer will prepare structural and facility foundation details per the geotechnical engineer's recommendation or City standards (if more conservative). Other excavation and competent materials will be described on the detailed plans to guide the contractors where needed (such as roadways and minor structures), as recommended by the soils engineer. The Project will result in no significant impacts. Design and construction will follow the currently available public work construction standards, including City's standards.

VII. HAZARDS AND HAZARDOUS MATERIALS

Environmental Setting

Weston Solutions, Inc. conducted a preliminary soil contaminant analysis of soils within the Project Area and examined water quality of the Big Canyon Watershed (Weston, 2007). Additional soil testing was performed by CH2MHILL (2008) These reports are included in Appendix H of this Initial Study.

Preliminary studies of sediment in the overall Big Canyon drainage revealed elevated selenium in sediment (over the 4 mg/kg dry weight ecological risk guideline [Sutula et al., 2008]) (Byron, E. and Santolo, G., 2008). Soil core sampling conducted in the existing freshwater marsh showed very high concentrations of selenium associated with surface sediments, ranging from 84 to 122 μ g Se/g. This pattern suggests that the marsh functions as a sediment trap for selenium sources from the upper canyon and for settling pond biota that have taken up waterborne selenium.

The results of the soil contaminant analysis also show that metals including arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver were all detected at levels below effects range-low (ERL) for marine sediment and within background levels for soil established by NOAA (Weston Solutions, 2007, Appendix H). Organochlorine pesticides and PCBs and organotins were not detected. With the implementation of the Project, approximately 47,300 cubic yards of excavated fill material will be generated.

Woul	D THE PROJECT:	POTENTIALLY SIGNIFICANT IMPACT	SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?				\boxtimes

LESS THAN

b)	Create a significant hazard to the public or the environment through reasonably foreseeable upset and/or accident conditions involving the release of hazardous materials, substances, or waste into the environment?			
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?			
d)	Be located on a site which is included on a list of hazardous materials sites, compiled pursuant to Government Code §65962.5, and, as a result, create a significant hazard to the public or environment?			
e)	Be located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport? If so, would the project result in a safety hazard for people residing or working in the project area?			
f)	Be located in the vicinity of a private airstrip? If so, would the project result in a safety hazard for people residing or working in the project area?			\square
g)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?			\boxtimes
h)	Expose people or structures to a significant risk of loss, injury, or death from wildland fires, including areas where wildlands are adjacent to urbanized area or where residences are intermixed with wildlands?	s		

Discussion

- a) No known hazardous materials are present within the Project Area and the Project would not involve the transport, use, or disposal of any hazardous materials. Soil toxicity testing conducted to date by CH2MHill, Inc. (Appendix H) has shown high levels of selenium in freshwater marsh soils, which have the potential to pose ecological risks. These soils will not be used as lining for the proposed freshwater pond and thus not be exposed to pond biota. Therefore, no impact would occur.
- b) No foreseeable upset and/or accident conditions involving the release of hazardous materials, substances, or waste into the environment is anticipated with the implementation of this Project. Soils with levels of selenium concentrations above established background levels will not be used as the liner for the proposed pond but may be used for fill in the interpretive area if the geotechnical engineer finds the material suitable.
- c) No schools are present or proposed within one-quarter mile of the Project Area, nor are hazardous emissions expected to be emitted or handled through the implementation of this Project.

- d) No portion of the Project Area is included on a list of hazardous materials sites that would create a significant hazard to the public or environment.
- e, f) John Wayne Airport is approximately two miles from the Project Area. However, given the nature of the project (habitat restoration and installation of recreational and interpretive facilities), safety hazards are not expected for people working or visiting the Project Area.
- g) The proposed Project would not impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan.
- h) The proposed Project is a restoration project covering a 60-acre site of open space and includes the replacement of dense non-native vegetation with sparse native vegetation. The density and type of vegetation proposed for restoration and enhancement are less fire-prone to those that are present in the Canyon.

Mitigation Measures Hazards and Hazardous Materials:

None Required

VIII. HYDROLOGY AND WATER QUALITY

Environmental Setting:

Big Canyon Creek's watershed of approximately two square miles is highly urbanized and completely developed and contributes significant water flow to the Project Area. The Creek drains this watershed directly into Upper Newport Bay. The headwaters are located near the San Joaquin Reservoir east of MacArthur Blvd.

Big Canyon Creek is in a natural, un-channelized condition within the Project Area. The natural function of Big Canyon includes accommodating storm events and flooding; during large floods, such as a 100-year flood, the entire canyon floor is inundated. This natural flooding process provides the necessary soil moisture for plant growth. However, the channel banks and inverts are subject to erosion and sedimentation during flood events which may cause damages to roadways, boardwalk bridge, and other infrastructures. This may also impact the existing habitats. The Project intends to improve the creek stability and prevent major erosion hazards during future flood events. Recognizing the environmental sensitivity, no major engineering work is allowed to entirely armor the creek and canyon. The Project's goal is to protect the infrastructure and reduce potential habitat loss with erosion and sedimentation management acceptable to the regulatory agencies. Tidal inundation in the Project Area is limited to the bayside of Back Bay Drive. Construction of Back Bay Drive cut off tidal flow but historic aerial photographs and maps of Big Canyon show that the historic range of the tidal wetlands once extended approximately 500 feet inland from Back Bay Drive and reached across the entire canyon mouth. Big Canyon currently drains through three 15-inch pipes under Back Bay Drive.

The water in Big Canyon Creek is unfiltered urban runoff draining a two-square mile developed watershed. The creek carries fertilizers and pesticides from lawns, landscaping and golf courses and pollutants from cars, streets and paved areas upstream of the Project Area. During storms, water sampling has shown very high levels of fecal bacteria at the Big Canyon Creek outlet in Upper Newport Bay based on 2004 monitoring results. Preliminary studies of the water quality and sediment in this drainage revealed water quality exceedances for selenium (over the 5 μ g/L chronic criterion for protection of aquatic life (Weston, 2007)). Results from a July 2008 monitoring program conducted by CH2MHill showed that all freshwater Big Canyon Creek sites were in exceedance of the California and national water quality criterion value for selenium (5 μ g/L as total recoverable selenium).

Upper Newport Bay is listed as an impaired water body under section 303(d) of the Clean Water Act. According to this classification, the following contaminants occur in both Upper and Lower Newport Bay: pesticides and metals, nutrients, pathogens, and sediments/siltation. Total Minimum Daily Loads (TMDL) for Newport Bay have been established for sediments, nutrients, and fecal coliform. The Project intends to help meet these TMDLs by addressing the polluted runoff in the creek before contaminated water reaches Upper Newport Bay. The proposed Project includes an integrated system of water quality improvement components, erosion and sedimentation control and use of natural habitats (see Chapter 2 and Figure 2).

		POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT <u>WITH</u> MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Wou	LD THE PROJECT:				
a)	Violate any water quality standards or waste discharge requirements?				\boxtimes
b)	Substantially deplete groundwater supplies or interfere substantially with groundwater recharg such that there would be a net deficit in aquifer volume or a lowering of the local groundwater ta level (e.g., the production rate of pre-existing ne wells would drop to a level that would not suppor existing land uses or planned uses for which per have been granted)?	ge, able earby ort ermits			
c)	Substantially alter the existing drainage pattern the site or area, including through alteration of t course of a stream or river, in a manner which would result in substantial on- or off-site erosion or siltation?	of 🗌 the			

d)	Substantially alter the existing drainage pattern of the site or area, including through alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in on- or off-site flooding?			
e)	Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?			
f)	Substantially degrade water quality?		\boxtimes	
g)	Place housing within a 100-year flood hazard area, as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map, or other flood hazard delineation map?			
h)	Place structures that would impede or redirect flood flows within a 100-year flood hazard area?			\boxtimes
i)	Expose people or structures to a significant risk of loss, injury, or death from flooding, including flooding resulting from the failure of a levee or dam?			
j)	Inundation by seiche, tsunami, or mudflow?			\boxtimes

Discussion

- a) The Proposed Project would not violate any water quality standards or waste discharge requirements.
- b) Groundwater will be used initially to fill the 7.51 acre-foot freshwater pond. From that time forward, groundwater would be extracted to keep the lake water surface at the 25 foot elevation. Rate of groundwater extraction would not substantially deplete groundwater supplies or interfere substantially with groundwater recharge, such that there would be a net deficit in aquifer volume or a permanent lowering of the local groundwater table levels.
- c) The existing creek shows moderate sedimentation potential upstream of the service road crossing and within the freshwater marsh area. Under the project condition, the fresh water marsh would be constructed in the existing sedimentation area upstream of the service road crossing and a sedimentation basin constructed at the outlet of the Jamboree Road culvert. The marsh would trap sediments as the flows move through and the upper pond will serve as a debris/sediment management area which will significantly reduce the sedimentation levels within the lower pond and protect its habitat value. The upper pond will be routinely maintained by the City to achieve the desired restoration objectives. No development exists downstream which would be impacted by the sediment levels within the pond. Since the upper watershed is heavily urbanized, it is expected that sediment removal is feasible and may need to be performed only after major rainstorms.

The fresh water marsh downstream of the service road crossing would be reduced significantly and the sedimentation potential would be significantly reduced. (see MMHWQ-1)

- d) The Project would maintain the same drainage paths and patterns as currently exist. The surface flow rates would also remain the same with the implementation of the Project.
- e) The additional impervious surfaces or other similar features are insignificant to cause any noticeable increase in surface runoff.
- f) The Project would result in positive water quality improvement. This project involves major riparian woodland creation work which might result in negative impacts associated with wildlife pollutants. The restoration elements provide an integral system of water quality filtration: riparian wetlands, freshwater ponds (upper pond also serves sediment detention), freshwater marsh, and additional end of the pipe BMPs. The sedimentation pond in the upper portion of Big Canyon will be maintained to remove settled solids, which will help attenuate levels of selenium in the Canyon. In addition, the riparian channel (North Channel) would receive less flows, therefore, reduce the erosion potential during high flows (approximate at or larger than 1,000 cfs). (See MMHWQ-2).
- g) All residential properties are on the high banks above the 100-year floodplain. These banks will not be impacted by the Proposed Project.
- h) One-Hundred year flows from Big Canyon Creek will be directed through the proposed flood control conveyance. This project element would improve surface water hydrology by reducing the force of high flows and erosion potential. The proposed freshwater pond and interpretive areas will not be within the 100-year floodplain of Big Canyon Creek. The water surface elevations in most of the excavated area below the proposed Back Bay Drive would be reduced to tidal levels and the realigned portion of Back Bay Drive would not be subject to riverine or tidal flooding.
- i) The embankments of the freshwater pond would be constructed with sufficient stability against erosion by a 100 year flood. The proposed embankment between the freshwater pond and flood control conveyance will be constructed of compacted fill and is configured per geotechnical recommendations. The proposed freshwater pond will be lined and therefore there will be no pond water seepage through the embankment. No risk associated with property loss or life threatening conditions would result from the project since no development is below the pond embankment.

Hydraulic analysis of the proposed flood control conveyance show that velocities in the conveyance will be below erosive levels due to the 2% longitudinal slope and heavily vegetated side slopes. The Proposed Project would not increase the risk of people or structures to loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam.

j) The Proposed Project would not increase the risk of the Project Area or surrounding land to be inundated as a result of seiche, tsunami, or mudflow. The watershed is heavily urbanized and the Upper Newport Bay is protected against ocean waves.

Mitigation Measures Hydrology and Water Quality:

MMHWQ-1:

 A California State registered civil engineer with sufficient knowledge of Big Canyon Creek erosion and sedimentation issues will develop a maintenance program prior to construction completion. The City will inspect and maintain the freshwater pond per the guidelines stated in the maintenance program.

MMHWQ-2:

 The WQMP would implement all applicable Best Management Practices (BMPs) as outlined in the Countywide NPDES Drainage Area Management Plan to ensure that potential adverse effects on water quality are minimized.

A California State registered civil engineer with knowledge of the erosion, sedimentation, and water quality issues of Big Canyon Creek will prepare a Water Quality Management Plan (WQMP) according to the Orange County Resources and Development Management Department's Drainage Area Management Plan guidelines and specific project needs for construction water quality management. Construction phasing, construction SWPPP, and surface flow control will be part of the WQMP. A resident engineer or City representative will certify plan implementation and will monitor the construction activities from preparation for construction to construction completion.

Weston Solutions, Inc. (2006) has prepared a Monitoring Plan and Quality Assurance Project Plan for assessing baseline water quality data and to assess the water and sediment quality that need to be addressed in the design and long-term sustainability of the Project.

IX. LAND USE AND PLANNING

Environmental Setting

The proposed project would maintain the current Open Space land use and restore the Project Area to improve open space activities for the public. The Project Area is currently a primary access point to Upper Newport Bay and the estuary is used by the public for recreation, wildlife observation and wetland-based education. Existing interpretive signage, parking lot and trails are degraded and in need of repairs.

The Project would construct a new educational kiosk within Big Canyon adjacent to Coastal Sage Scrub habitat, which is considered an Environmentally Sensitive Habitat Area (ESHA) under the California Coastal Act.

		POTENTIALLY SIGNIFICANT IMPACT	<u>SIGNIFICANT</u> <u>WITH</u> <u>MITIGATION</u>	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Woυ	LD THE PROJECT:				
a)	Physically divide an established community?				\boxtimes
b)	Conflict with the applicable land use plan, policy or regulation of any agency with jurisdiction over the project (including, but not limited to, a genera plan, specific plan, local coastal program, or zon ordinance) adopted for the purpose of avoiding of mitigating an environmental effect?	, al ing or			
c)	Conflict with any applicable habitat conservation plan or natural community conservation plan?				\boxtimes

Discussion

- a) The proposed Project would restore Big Canyon Creek and the surrounding open space. It would not involve dividing an established community.
- b) The proposed interpretive center and restoration activities will be located in an area that contains coastal sage scrub habitat that may be considered an Environmentally Sensitive Habitat Area (ESHA) due to the presence of the California gnatcatcher (a federally Threatened species and California Species of Special Concern). The California Coastal Act (PRC, Division 20) Section 30107.5 defines ESHA as "any area in which plant or animal life or their habitats are either rare or especially valuable because of their special nature or role in an ecosystem and which could be easily disturbed or degraded by human activities and developments". The Coastal Act (section 30240) also restricts development activities within ESHA and states "Environmentally sensitive habitat areas shall be protected against any significant disruption of habitat values, and only uses dependent on those resources shall be allowed within those areas." The proposed project will result in a net increase of coastal sage scrub and project activities within sage scrub habitat include an interpretive center for environmental education.

The Project is also consistent with the City of Newport Beach Coastal Land Use Plan Policy 4.1.3-1 as it includes mitigation measure outlined for the mouth of Big Canyon in Table 4.1.1 as a part of the proposed project except for measure 4.1.3-1G since the Project Area does not include any blufftops (City of Newport Beach 2005).

The Project is also consistent with the City of Newport Beach General Plan, specifically Natural Resources component 3.9, 3.10, 3.13, 3.18, 4.2, 4.3, and 4.4 (City of Newport Beach, 2006).
A separate guidance letter (CCC 2007) states that "only 'resource dependent' development, such as restoration or nature study, is allowed in ESHA". As the proposed project does not pose a significant disruption to habitat values (see Biological Resources section for more detailed discussion of this topic) and the proposed uses appear to be compatible with ESHA, no significant environmental impacts related to Land Use are expected as a result of the proposed project.

c) The proposed Project would restore tidal influence to Big Canyon Creek and re-establish natural transitions between wetland and upland communities. In addition, the Project would involve the removal of infertile soils, repair flood damage, address urban runoff, remove nonnative plant species, restore native habitats and restore the freshwater pond. None of these activities conflict with the City of Newport Beach LCP.

Mitigation Measures Land Use and Planning:

None Required

X. MINERAL RESOURCES

or other land use plan?

Environmental Setting

The Project Area is located primarily on dredged fill. There are no known mineral resources of value to the region or the state.

		POTENTIALLY SIGNIFICANT IMPACT	<u>LESS THAN</u> <u>SIGNIFICANT</u> <u>WITH</u> <u>MITIGATION</u>	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Wou	LD THE PROJECT:				
a)	Result in the loss of availability of a known mineral resource that is or would be of value to the region and the residents of the state?				
b)	Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan	,			

Discussion

- a) Because the Project does not contain any mineral resources, there would not be any potential for the loss of known mineral resources and no impact would occur.
- b) Based on the type of underlying soils, there is no known locally important mineral resource within the Project Area. As such, there would not be any potential for the loss of known mineral resources and no impact would occur.

Mitigation Measures Mineral Resources:

• None Required

XI. NOISE

Environmental Setting

The project is located in a canyon, which is surrounded on both sides by residences. The closest residences are approximately 500 feet from the Project Area and elevated above the site. The project is an ecological restoration of a creek and wetland area, which will not generate any noise when completed. Proposed outdoor seating areas are designed to accommodate up to 100 people.

		POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Wou	LD THE PROJECT:				
a)	Generate or expose people to noise levels in exc of standards established in a local general plan o noise ordinance, or in other applicable local, state or federal standards?	ess 🗌 r e,			
b)	Generate or expose people to excessive grounds vibrations or groundborne noise levels?	oorne			\bowtie
c)	Create a substantial permanent increase in ambienoise levels in the vicinity of the project (above levels without the project)?	ent			\boxtimes
d)	Create a substantial temporary or periodic increa in ambient noise levels in the vicinity of the project in excess of noise levels existing without the project?	se 🔲 ct,	\square		
e)	Be located within an airport land use plan or, whe such a plan has not been adopted, within two mil of a public airport or public use airport? If so, would the project expose people residing or work in the project area to excessive noise levels?	ere 🔲 es ing			
f)	Be in the vicinity of a private airstrip? If so, would project expose people residing or working in the project area to excessive noise levels?	d the			\boxtimes

- a, b, c) The project would not generate or expose people to noise levels in excess of standards established in a local general plan, noise ordinance, or other applicable federal, state or local standards. Educational programs currently occur within Big Canyon and the proposed additional seating capacity will not increase noise levels during educational activities as sound amplification devices will be prohibited. The project would also not expose people to excessive ground-borne vibrations or ground-borne noise levels, or create a substantial permanent increase in ambient noise levels.
 - d) The project could create a substantial temporary or periodic increase in ambient noise levels in the project vicinity during construction of tidal marshes and riparian habitat, removal of fill material, trail-building and other activities. Other than roadway pavement and erosion control work, grading operation is the only other significant activity and no other development activities will be involved. Several elements such as restrooms and outdoor seating areas have been changed to involve portable equipment and more environmentally friendly facilities. This will reduce construction noise significantly. In addition, proper scheduling of construction activities and control of construction equipment are planned to reduce noise to the extent possible (MNNS-1).
 - e) The Project is within two miles from John Wayne Airport. However, the Project is outside of the 60 CNEL contour for traffic noise levels (City of Newport Beach 2005, Figure N-1) and thus people residing or working in the project area would not be exposed to excessive noise levels. The Project is located within and will remain Open Space, which according to the City of Newport Beach General Plan Noise component is "Clearly Compatible" use at or below 60-65 CNEL. The Project does not include any additional permanent source of noise.
 - f) The project is not located in the vicinity of a private airstrip.

Mitigation Measures Noise:

MMN-1:

 Construction will be scheduled for normal work hours (between 7 am and 5 pm) when most neighboring residents are at work. Construction will occur during fall and winter seasons only for a two to three year time period but about 50% of the time period will involve only planting activities that will not generate excessive noise. Construction materials and methods which do not require heavy and noisy equipment will be applied to the extent possible.

XII. POPULATION AND HOUSING

Environmental Setting

The proposed Project is a creek restoration project and does not contain any housing developments.

		POTENTIALLY SIGNIFICANT IMPACT	SIGNIFICANT WITH MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Wou	LD THE PROJECT:				
a)	Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				
b)	Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				\boxtimes
c)	Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				\boxtimes

Discussion

- a) The proposed Project would not directly or indirectly induce population growth through the provision of new homes, businesses, infrastructure, or service.
- b,c) No existing housing would be displaced as a result of implementing the proposed Project, nor would the Project result in the displacement of people. Therefore, no replacement housing would be required and no impact would occur.

Mitigation Measures Population and Housing:

None Required

XIII. PUBLIC SERVICES

Environmental Setting

Police and fire protection are provided by the City of Newport Beach, and access for these services is gained on the existing dirt road through Big Canyon. The Project Area is managed by the Department of Fish and Game. Schools in the vicinity are managed by the Newport Mesa Unified School District.

Wou	LD THE PROJECT:	POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT <u>WITH</u> MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
a)	Result in significant environmental impacts from construction associated with the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:	e			
	Fire protection?				\boxtimes
	Police protection?				\boxtimes
	Schools?				\boxtimes
	Parks?				\boxtimes
	Other public facilities?				\boxtimes

a) The Project would not result in the construction of new or altered police protection, school, or other public facilities. Improved access roads will remain accessible to police and fire protection services. The new outlet to Jamboree Road will Road will provide a safer outlet for vehicles exiting onto Jamboree Road due to the 90 degree connection. The Project would not induce population growth, and therefore, the need for new or physically altered governmental facilities (fire and police protection, schools, and other public facilities) would not be required.

Mitigation Measures Public Services:

• None Required

XIV. RECREATION

Environmental Setting

The Project would restore Big Canyon Creek and provide opportunities for recreation by means of trails, bike paths, overlook sites and interpretative media.

	POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT <u>WITH</u> MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
WOULD THE PROJECT:				
 a) Increase the use of existing neighborhood and regional parks or other recreational facilities, such that substantial physical deterioration of the facility would occur or be accelerated? 				
 b) Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical 			\boxtimes	

- a) The Project would result in a beneficial impact and would not cause deterioration of Big Canyon Park and other adjacent facilities. The Project will maintain and enhance its current function for outdoor education and passive recreation. The trail network in Big Canyon would be improved to provide continuous ADA access within the central gathering area and the public viewing of the freshwater pond and wetlands. In addition to ADA trails, two-way bike trails along Back Bay Drive and the loop road (connecting to parking and the central gathering area) will also function as hiking and jogging trails for physical fitness.
- b) The new trails and interpretive facilities would be constructed in areas without environmental significance under existing and Project conditions; therefore, no significant impact is expected. The Project would provide outdoor education and passive recreation for nearby residents, school children in Orange County and other public groups. A major objective of the project is to increase environmental awareness. Interpretive, regulatory, and directional signs would be posted to educate visitors on biological resources and water quality protection, while avoiding any unintentional disturbance.

Mitigation Measures Recreation:

effect on the environment?

None Required

XV. TRANSPORTATION/TRAFFIC

Environmental Setting

The Project Area is currently accessible by the public through San Joaquin Hills Road and Back Bay Drive, which is also a primary access to Upper Newport Bay. The Project Area and estuary are used by the public for recreation, wildlife observation and outdoor education. The existing daily vehicular traffic on the Back Bay Drive was measured at 136 and 164 on April 17 and 18, 2007, respectively, by the City of Newport Beach. There are 35 existing automobile parking spaces and two for buses to accommodate the existing parking demand with less than 50% of these lots occupied most of time. Back Bay Drive has a one-way lane (northward) with two-way dedicated bike trails on the bayside. This will be maintained under the Project condition except for realignment of the road for tidal marsh creation. Vehicular access to the Big Canyon will continue via Back Bay Drive. Back Bay Drive will continue to function as a throughway along the edge of Upper Newport Bay Ecological Preserve (Community Conservancy International 2004).

		POTENTIALLY SIGNIFICANT IMPACT	<u>SIGNIFICANT</u> <u>WITH</u> <u>MITIGATION</u>	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Wou	ILD THE PROJECT:				
a)	Cause a substantial increase in traffic, in relation to existing traffic and the capacity of the street system (i.e., a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?				
b)	Exceed, individually or cumulatively, the level of service standards established by the county congestion management agency for designated roads or highways?				
c)	Cause a change in air traffic patterns, including either an increase in traffic levels or a change in location, that results in substantial safety risks?				\boxtimes
d)	Contain a design feature (e.g., sharp curves or a dangerous intersection) or incompatible uses (e.g., farm equipment) that would substantially increase hazards?				
e)	Result in inadequate emergency access?				\boxtimes
f)	Result in inadequate parking capacity?				\boxtimes
g)	Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus	s 🗌			\boxtimes

turnouts, bicycle racks)?

a) As a goal of this Project is to promote public use through recreation and education, visitor counts are expected to increase with the implementation of the Project. By proper scheduling of visitor groups, it is expected that vehicular traffic increase will be insignificant. Since the land use is preserved under the Project condition, it is expected that traffic changes or associated hazards would not occur due to design features or incompatible use.

During the construction phase of the Project, trucks will be used to haul off approximately 40,000 cubic yards of dredge material. Removal of dredge material is expected to begin in 2008 and will take approximately 125 days per year for two years. The dredged material is expected to be disposed of at Frank R. Bowerman Landfill, located at 11002 Bee Canyon Access Road, Irvine, CA, approximately 15 miles from the Project Area. Approximately 20 cubic yards of material would be hauled per truck, an average of eight truck trips per day with 40 truck trips per day maximum (See Air Quality section, discussion (b) for details on construction traffic). Modified traffic conditions resulting from the project will be temporary, and will not change the overall Level of Service (LOS) in the long term from a "D" classification, which is the designated LOS for most roads in the City of Newport Beach, as described in the Circulation Element of the City's General Plan (City of Newport Beach 2006). This will not cause significant impacts on Back Bay Drive or adjoining streets.

- b) Project-generated traffic would not cause the level of service standards established by the county congestion management agency for designated roads or highways to be exceeded.
- c) The construction of the Project and related facilities would not affect air traffic facilities. The Project Area is not near any air traffic facility or function. Therefore, no impacts are anticipated.
- d) To create the tidal marsh, Back Bay Drive would be lengthened with curves at a minimum of 100 feet radius. Since there are no major hills obstructing the views of the drive, it would not cause significant impacts. The Project would limit speeds to 15 miles per hour and would include speed limit and warning signs to enforce traffic safety.
- e) The Project Area is accessible to and from Jamboree Road, San Joaquin Hill Road/Big Canyon Drive, and several service roads on the high banks. The Project would maintain all these access points.
- f) The parking lot will be moved out of the sensitive tidal wetlands area and relocated to the opposite side of the road. Relocation of the parking lot will allow school groups and other visitors to assemble safely away from traffic on Back Bay Drive.
- g) Implementation of the Proposed Project would not conflict with any adopted policies supporting alternative transportation.

Mitigation Measures Transportation/Traffic:

None Required

XVI. UTILITIES AND SERVICE SYSTEMS

Environmental Setting

Orange County Sanitation District (OCSD) sewer main is the only major utility crossing the Project Area. The sewer main and manholes will not interfere with project construction. The sewer lines are deep below the proposed grade without potential to be damaged. OCSD is extending the maintenance road to the manhole north of the channel bank near Jamboree Road. City's sewer lines are on the high bank and will not be impacted. Temporary irrigation water for construction and plant establishment will be tapped to those along Jamboree Road under the agreement with the City. The new freshwater pond would have a groundwater or potable municipal water source via a supply water line connection to a 16-inch water line in Jamboree Road.

		POTENTIALLY SIGNIFICANT IMPACT	LESS THAN SIGNIFICANT <u>WITH</u> MITIGATION	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
wou	LD THE PROJECT:				
a)	Exceed wastewater treatment restrictions or standards of the applicable Regional Water Quality Control Board?				
b)	Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
c)	Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				\boxtimes
d)	Have sufficient water supplies available to serve the project from existing entitlements and resource or are new or expanded entitlements needed?	□ ⊳s,			\boxtimes
e)	Result in a determination by the wastewater treatment provider that serves or may serve the project, that it has adequate capacity to service the project's anticipated demand, in addition to the provider's existing commitments?				
f)	Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?			\boxtimes	
g)	Comply with federal, state, and local statutes and				\boxtimes

City of Newport Beach

regulations as they relate to solid waste?

Discussion

a, b) The Project would not require construction of a new water treatment or wastewater treatment facility or expansion of the existing treatment facilities serving the project vicinity. The project would not impact the wastewater treatment quality based on the restrictions or standards of the applicable Regional Water Quality Control Board. Groundwater or potable water would be used to supply adequate hydrology to the new freshwater marsh.

The Project may require long-term potable water source if groundwater supplies shows selenium concentrations above ecological risk levels or do not provide adequate hydrology for the freshwater pond. Recharge of the freshwater pond levels will be dependent on variable evaporation rates of this open water system. Potable or groundwater will be used to fill and maintain this 7.51 acre-foot feature at 25 feet elevation. The pond does not have a constant-flow outlet; there is however a drainline at the western end of the proposed pond that will be used for periodic maintenance activities.

Additionally, short-term irrigation would be needed to establish the plants outside of the creek or outside tidal inundation areas. Temporary water may also be needed during construction. A temporary water lateral from the Jamboree Road water main will be provided during construction and the two year plant establishment period. Solar power could be used to operate the temporary irrigation system.

The restroom facility included in the Project contains four unisex portable chemical toilets. The toilets are near the existing sewer manhole but there is no immediate plan for gravity sewer connection.

- c) The Project is within and near Big Canyon Creek. No new storm water system is required.
- d) The Project would have sufficient water supplies available to serve the implementation of the restoration. No new entitlements would be needed.
- e) The restroom facility included in the Project contains four unisex portable chemical toilets. The toilets are near the existing sewer manhole but there is no immediate plan for gravity sewer connection. The existing sewer has the capacity to accommodate the toilet discharge and the Orange County Sanitation District (OCSD) has approved the connection per OCSD standards.
- f) Project construction will produce debris and dirt. The Frank R. Bowerman Landfill located at 11002 Bee Canyon Access Road, Irvine, CA 92602 would be the closest disposal site. Approximately 75,000 cubic yards of excavated materials would be generated; of which, approximately 50%

would be reused for on-site fill or application to other public construction. The project waste will not exceed the existing landfill capacity.

 h) Based on the 2008 CH2M Hill soil toxicity analysis (Byron, E. and Santolo, G.), there is selenium contamination in the freshwater marsh soils that would be excavated during construction. These soils are not considered toxic waste.

Mitigation Measures Utilities and Service Systems:

• None Required

XVII. MANDATORY FINDINGS OF SIGNIFICANCE

		<u>POTENTIALLY</u> <u>SIGNIFICANT</u> <u>IMPACT</u>	<u>SIGNIFICANT</u> <u>WITH</u> <u>MITIGATION</u>	LESS THAN SIGNIFICANT IMPACT	<u>NO</u> IMPACT
Wou	LD THE PROJECT:				
a)	Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or Restrict the range of a rare or endangered plant or animal or eliminate important examples of the majo Periods of California history or prehistory?	r			
b)	Have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means the incremental effects of a project are considerable when viewed in connection with the effects of past projects, other current project and probably future projects?)	n cts,			
c)	Have environmental effects that will cause substantial adverse effects on humans, either directly or indirectly?				\boxtimes

Discussion

- a) The proposed Project was evaluated for potential significant adverse impacts to the natural environment and its plant and animal communities. It was determined that the project could potentially impact birds and other sensitive wildlife species as well as sensitive plant species and communities. However, implementation of all conditions and mitigation measures incorporated into this document would reduce those impacts, both individually and cumulatively, to a less than significant level.
- b) The proposed Project would not have cumulatively considerable impacts.

LECO TUAN

c) The proposed Project would not have environmental effects that would cause substantial adverse effects on humans.

CHAPTER 4 - REFERENCES

Archaeological Research Inc. 1976. Archaeological Sites of Upper Newport Bay Report

- Byron, G. and Santolo, G. July 25, 2008. Draft Big Canyon Wash Wetlands Restoration: Baseline Selenium Results. Prepared for the City of Newport Beach, California, and the Santa Ana Regional Water Quality Control Board.
- California Air Resources Board. 2006. Almanac Emissions Projection Data, Annual Average Emissions (2005), Orange County.
- CH2MHill. 2008. Draft Big Canyon Wash Wetlands Restoration: Baseline Selenium Results July 25 2008.
- City of Newport Beach 2005. City of Newport Beach Local Coastal Program Coastal Land Use Plan. Adopted December 13 2005. Resolution No. 2005-64.
- City of Newport Beach 2006. City of Newport Beach General Plan. Adopted July 25, 2006.
- City of Newport Beach 2006. City of Newport Beach General Plan. Adopted July 25, 2006.
- Coastal Resources Management, Inc. July 2008. Big Canyon Restoration Project Essential Fish Habitat Analysis. Report.
- Community Conservancy International. 2004. Big Canyon Creek: Historic Tidal Wetlands Conceptual Restoration Plan.
- County Sanitation Districts of Orange County. 1976. Environmental Assessment of Back BayTrunk Sewer (East Side).
- Environmental Protection Agency (EPA). 1978. Protective Noise Levels. Condensed Version of US EPA Levels Document. USEPA 550/9-79-100.
- Geosoils, Inc. 2006. Geotechnical Feasibility Report: Big Canyon Creek Restoration, Upper Newport Bay, Newport Beach, County of Orange, California.
- K.P. Lindstrom, Inc. May 24, 2000. Back Bay Trunk Sewer Project Environmental Assessment, Appendix A
- NatureServe. 2009. NatureServe Explorer: An online encyclopedia of life [web application]. Version 1.8. NatureServe, Arlington, Virginia. Available: <u>http://www.natureserve.org/explorer</u>.
- South Coast Air Quality Management District (SCAQMD). 2007. Emissions Factors (EMFAC) Version 2.3. Onroad, Heavy Duty Diesel Trucks, http://www.aqmd.gov/ceqa/handbook/onroad/onroad.html.

SCAQMD. 2003. Air Quality Management Plan.

- Sutula, M., J. Brown, E. Fetscher, S. Madon, G. Santolo, E. Byron, and C. Stransky. 2008. Habitat Value of Urban Wetlands. *Final report to the Los Angeles Regional Water Quality Control Board for the "Assessment of Effectiveness of Treatment Wetlands for Stormwater BMPs and Compatibility with Wildlife Beneficial Uses"*. Grant Agreement No. 04-090-554-0. SCCWRP Technical Report.
- VA Consulting. May 2009. Big Canyon Creek Restoration Project, Hydraulic and Structural Calculations Package (Phase 1 & 2).
- Weston Solutions, Inc. 2006. Monitoring Plan and Quality Assurance Project Plan for Big Canyon Creek Flow and Water Quality Assessment.
- Weston Solutions, Inc. February 2007. *Big Canyon Soil Assessment.* Report. prepared for WRC Consulting Services.
- WRC Consulting Services, Inc. 2007. Big Canyon Creek Restoration Project Phase II: Feasibility Study Report.

FIGURES

Figure 1. Location Map

Figure 2. Grading Plan

Figure 3. Typical Tidal Marsh Cross Section

Figure 4. Typical Freshwater Pond Cross Section

Figure 5. Typical Flood Control Conveyance Cross Section

Figure 6. Habitats and Sensitive Species of Big Canyon

Figure 7. Section 404 Wetlands and Waters

Figure 8. California Coastal Commission Jurisdictional Areas

Figure 9. California Department of Fish and Game Jurisdictional Areas

Figure 10. Historic Tidal Wetlands and 100-Year Flood Zone

Figure 11. Conceptual Restoration Plan

Big Canyon Creek Restoration Typical Tidal Marsh Cross Section

Big Canyon Creek Restoration Typical Freshwater Pond Cross Section

HABITATS AND SENSITIVE SPECIES OF BIG CANYON

Habitats of Big Canyon

A team of biologists conducted surveys in 2003 to record the many different plants and endangered and sensitive species living in Big Canyon. Big Canyon's 70 acres encompass the tidal area influenced by Big Canyon Creek and include mudflats, salt marsh and other wellands habitats.

• Diversity

Despite decades of disturbance and the negative impacts of urbanization, Big Canyon still supports a diversity of habitats and species. Big Canyon has 42 plant communities, which are shown here grouped into 14 habitat types.

Fragmented Habitats

Many of these habitats are of poor quality because they are fragmented and unconnected. This harms the long-term health of native plants and wildlife, which cannot flourish in these small and disconnected areas.

Existing Habitat

HISTORIC TIDAL WETLANDS & WATERS OF BIG CANYON

TABLES

- Table 1. Section 404 Jurisdictional Areas and Impacts
- Table 2. California Coastal Commission Jurisdictional Areas and ImpactsTable 3. Corresponding Table for Figure 8
- Table 4. California Department of Fish and Game Jurisdictional Areas Impacts and Creation

Table 1. Section 404 Jurisdictional Areas and								
Impacts								
Vegetation and acreage data for each polygon.								
POLYGON								
ID		Acres						
1	Seasonal_Wetland	0.06						
2	Freshwater_Marsh	0.05						
3	Seasonal_Wetland	0.01						
4	Seasonal_Wetland	0.01						
5	Seasonal_Wetland	0.07						
6	Freshwater_Marsh	1.16						
7	Seasonal_Wetland	0.01						
8	Seasonal_Wetland	0.00						
9	Seasonal_Wetland	0.01						
10	Seasonal_Wetland	0.01						
11	Seasonal_Wetland	0.13						
12	Freshwater_Marsh	3.76						
13	Seasonal_Wetland	0.17						
14	Freshwater_Marsh	0.17						
15	Salt_Marsh	0.01						
16	Salt_Marsh	0.00						
17	Waters	0.68						
18	Waters	0.03						
19	Waters	0.56						
20	Freshwater_Marsh	0.01						
21	Freshwater_Marsh	0.09						
22	Freshwater_Marsh	0.08						
23	Freshwater_Marsh	0.02						
24	Salt_Marsh	0.00						
25	Salt_Marsh	0.00						
26	Salt_Marsh	0.01						
27	Salt_Marsh	0.00						
28	Waters	0.00						
29	Waters	0.05						
30	Waters	0.01						
31	Waters	0.03						
32	Waters	0.10						
33	Waters	0.11						
34	Waters	0.00						
35	Waters	0.09						
	TOTAL	7.50						

	Acres	Existing
Summary	Impacted	Acres
Seasonal Wetland	0.49	0.54
Freshwater Marsh	5.34	7.34
Salt Marsh	0.02	5.93
Waters	1.66	5.78
TOTAL	7.50	19.59

Table 2. California Coastal Commission							
Jurisdictional Areas and Impacts							
Vegetation and acreage data for each polygon.							
POLYGON							
ID	COMMUNITY	ACRES					
1	Freshwater Marsh	0.06					
2	Freshwater Marsh	0.05					
3	Seasonal Wetland	0.01					
4	Seasonal Wetland	0.01					
5	Seasonal Wetland	0.01					
6	Seasonal Wetland	0.00					
7	Seasonal Wetland	0.01					
8	Seasonal Wetland	0.01					
9	Riparian	0.06					
10	Seasonal Wetland	0.13					
11	Freshwater Marsh	3.74					
12	Seasonal Wetland	0.05					
13	Seasonal Wetland	0.17					
14	Freshwater Marsh	0.17					
15	Riparian	0.30					
16	Salt Marsh	0.01					
17	Salt Marsh	0.00					
18	Waters	0.68					
19	Waters	0.03					
20	Waters	0.56					
21	Riparian	0.10					
22	Riparian	0.00					
23	Non-native	0.99					
24	Non-native	1.07					
25	Riparian	0.09					
26	Riparian	2.51					
27	Freshwater Marsh	0.08					
28	Freshwater Marsh	0.02					
29	Freshwater Marsh	1.16					
30	Seasonal Wetland	0.01					
31	Seasonal Wetland	0.10					
32	Riparian	0.00					
33	Riparian	0.03					
34	Riparian	0.74					
35	Freshwater Marsh	0.01					
36	Freshwater Marsh	0.09					
37	Salt Marsh	0.00					
38	Salt Marsh	0.00					
39	Salt Marsh	0.01					
40	Waters	0.00					
41	Waters	0.05					
42	Waters	0.01					
43	Waters	0.03					
44	Waters	0.10					
45	Waters	0.11					
46	Waters	0.09					
_	TOTAL	13.46					

Summary	Acres Impacted	Existing Acres
Freshwater Marsh	5.38	7.39
Seasonal Wetland	0.52	0.91
Riparian	3.83	11.23
Salt Marsh	0.02	5.93
Waters	1.66	5.78
Non-native	2.06	2.06
TOTAL	13.46	33.3

Table 3. Corresponding Table for Impacts Figure 8: Vegetation and acreage data for each polygon:

ID COMMUNITY UALLIY IMPACT MPACT Community ULUITY IMPACT 1.216 <th1.216< th=""> 1.216</th1.216<>	POLYGON			DFG	TOTAL	POLYGON	1		DFG	TOTAL
1 Ch. Moduratie 0.002 2 Ri Low 0.070 3 Gr Moduratie 0.024 4 CISS Low 0.014 7 Ri Low 0.017 8 Cis Low 0.012 9 Cis Low 0.012 9 Cis Low 0.012 9 Gr Moduratie 0.052 10 Gr Low 0.052 11 Gr Low 0.052 12 Gr Low 0.052 13 Gr Low 0.052 13 Gr Low 0.052 14 CISS Low 0.052 15 Wet Low 0.054 16 Wet Low 0.052 19 SM High 0.051 0.051 19 SM High 0.021 0.051 <td< th=""><th>ID</th><th>COMMUNITY*</th><th>QUALITY</th><th>IMPACTS</th><th>IMPACT</th><th>ID</th><th>COMMUNITY*</th><th>QUALITY</th><th>IMPACTS</th><th>IMPACT</th></td<>	ID	COMMUNITY*	QUALITY	IMPACTS	IMPACT	ID	COMMUNITY*	QUALITY	IMPACTS	IMPACT
2 8 Dow 0.070 3 Gr Moderate 0.024 4 CSS Low 0.024 6 Gr Low 0.031 7 FM Low 0.031 8 Gr Low 0.031 9 R Low 0.036 0.032 9 Gr Moderate 0.052 0.024 0.031 10 Gr Low 0.060 0.042 0.052 11 Gr Low 0.061 84 RI Moderate 0.062 11 Gr Low 0.060 0.062 84 RI Moderate 0.020 12 Gr Moderate 0.062 0.023 0	1	Ch	Moderate		0.032	76	OPP	Low	1 216	1 216
-6 Co Corr Cor	2		Nouerale		0.032	70	OF K	LOW	0.190	0.190
3 CP Moderate 0.014 4 CS Low 0.015 0.012 0.015 0.015 0.012 0.015	2	RI	LOW		0.070	77	FM	LOW	0.180	0.180
4 CSS Low 0.004 79 Ni Low 0.033 0.033 6 C Low 0.035<	3	Gr	Moderate		0.024	78	FM	Low	0.017	0.017
6 Gr Low 0.031 6 Ri Low 0.026 Ri Ri Corr 0.035 7 Ri Modernia 0.011 0.012 0.012 0.012 0.012 0.011	4	CSS	Low		0.004	79	Ri	Low	0.033	0.033
6 Ri Low 0.026 0.026 7 Ri Moderate 0.011 0.012 0.011 0.011 0.012 0.011	5	Gr	Low		0.031	80	FM	Low	0.035	0.035
P R Kodersite 0.001 0.002 B Gr Low Modersite 0.052 10 Gr Low Modersite 0.052 11 Gr Low Modersite 0.052 12 Gr Modersite 0.052 13 Gr Modersite 0.052 14 CSS Modersite 0.052 15 Wit Low 0.050 15 Wit Low 0.050 15 Wit Low 0.079 16 Wit High 0.060 17 Wit Low 0.050 18 Gr Low/Modersite 0.020 20 BM High 0.040 0.060 22 SF High 0.040 0.060 23 Gr High 0.041 0.040 24 GSS Low 0.001 0.002 25 Gr High 0.044	6	Ri	Low	0.026	0.026	81	Ri	Low	0 164	0 164
B Cr Door Moderate Color 90 Gr Moderate 0.058 100 Gr Low Moderate 0.058 111 Gr Low Moderate 0.060 122 Gr Moderate 0.014 131 Gr Low Moderate 0.014 141 CSS Low Moderate 0.017 15 Wat Low Moderate 0.017 15 Wat Low Moderate 0.020 16 Moderate 0.017 0.022 16 Moderate 0.020 90 D Low Moderate 0.022 19 SM High 0.010 0.001 93 81 Low Moderate 0.020 20 SM High 0.002 0.002 94 81 Low Moderate 0.001 21 SS Low Moderate 0.020 0.002 22 SF High 0.002 0.002 23 <td>7</td> <td>Di</td> <td>Modorato</td> <td>0.001</td> <td>0.001</td> <td>92</td> <td></td> <td>Low</td> <td>1 297</td> <td>1 297</td>	7	Di	Modorato	0.001	0.001	92		Low	1 297	1 297
6 Construction Construction 00 Construction Construction <td>1</td> <td></td> <td></td> <td>0.001</td> <td>0.001</td> <td>02</td> <td>OFR</td> <td>LOw Madagets (List</td> <td>1.307</td> <td>1.307</td>	1			0.001	0.001	02	OFR	LOw Madagets (List	1.307	1.307
0 Gr Moderate 0.052 10 Gr Low 0.052 0.052 11 Gr Low 0.052 0.052 13 Gr Low 0.051 0.051 14 CSS Low 0.053 0.051 15 Wet Low 0.079 0.079 16 Wet Mgh 0.008 0.088 0.052 16 Wet Low 0.079 0.079 0.00 Low 0.020 17 Wet Low 0.008 0.068 90 D Low 0.020 18 Gr Low 0.007 0.002 0.022 0.0	8	Gr	Low/ Moderate		0.002	83	UPR	woderate/High	0.014	0.014
10 Gr Low 0.052 11 Gr Low 0.080 12 Gr Moderate 0.014 13 Gr Low 0.022 0.228 14 Gr Low 0.029 0.029 15 Viet Low 0.029 0.029 16 Wet Hegh 0.038 0.028 0.028 0.022 0.220 0.222 0.222 0.222 0.222 0.223 0.021 0.031 0.022 0.033 0.033 0.033 0	9	Gr	Moderate		0.058	84	Ri	Moderate/High	0.061	0.061
11 Gr Low 0.004 86 0 NA 0.289 0.289 0.289 0.282 0.283 0.281 0.281 0.282 <th0.282< th=""> 0.282 0.282</th0.282<>	10	Gr	Low/ Moderate		0.052	85	OP	Low		0.050
12 Gr Moderate 0.063 13 Gr Low 0.063 14 CSS Low 0.029 15 Wet Low 0.079 16 Wet Low 0.028 17 Wet Low 0.026 18 CSS Low/Moderate 0.020 18 Gr Low 0.026 19 SM High 0.006 0.008 21 SK High 0.016 0.019 22 SF High 0.010 0.010 23 Gr High 0.021 0.002 24 CSS Low 0.000 0.000 25 Gr Moderate 0.050 26 High 0.045 0.082 27 CSS High 0.046 0.049 28 High 0.046 0.049 29 RI High 0.047 Low	11	Gr	Low		0.080	86	D	N/A	0.289	0.289
13 Cr Low/ Moderate 0.022 14 CSS Low 0.022 15 Wet Low 0.021 16 Wet High 0.060 17 Wet Low 0.056 18 Gr Low/ Moderate 0.022 19 SM High 0.010 0.001 20 BM High 0.010 0.002 21 SK Low/ Moderate 0.002 0.002 22 SF High 0.010 0.001 93 Ri Low/ Moderate 0.021 0.022 22 SF High 0.002 0.002 93 Ri Low/ Moderate 0.001 0.000 24 CSS Low 0.001 0.002 0.002 0.022 0.023 0.01 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.016 0.023 0.011 0.016 0.023 0.011 0.01	12	Gr	Moderate		0.014	87	D	NI/A	0.282	0.282
14 0'S LOW Moderate 0.002 15 Veri 4'gh 0.006 0.006 17 Wei High 0.006 0.006 18 Gr Low Moderate 0.002 19 SM High 0.001 0.010 21 SM High 0.001 0.001 22 SF High 0.001 0.001 23 Gr High 0.002 0.002 24 CSS Low 0.006 0.008 25 GN Moderate 0.001 0.001 26 GN Moderate 0.006 0.006 27 CSS High 0.012 0.022 28 GN Moderate 0.006 0.006 29 Ri High 0.017 0.017 28 GN Moderate 0.020 0.022 30 FM Low Moderate 0.020 <t< td=""><td>12</td><td>0</td><td></td><td></td><td>0.000</td><td>07</td><td>000</td><td>IN/A</td><td>0.202</td><td>0.202</td></t<>	12	0			0.000	07	000	IN/A	0.202	0.202
14 CSS Low 0.022 15 Weit Low 0.073 0.079 16 Weit Low 0.073 0.079 17 Weit Low 0.020 0.020 18 Weit Low 0.020 0.020 19 SM High 0.010 0.001 20 BM High 0.002 0.002 21 SF High 0.001 0.001 22 SF High 0.002 0.002 23 Gr High 0.002 0.002 24 CSS Low 0.001 25 Gr Moderate 0.050 26 Gr Moderate 0.051 101 Gr Low 0.001 26 FM High 0.042 0.032 102 Gr Low 0.002 27 CSS High 0.013 0.013 101 Gr Low </td <td>13</td> <td>Gr</td> <td>Low/ woderate</td> <td></td> <td>0.063</td> <td>88</td> <td>635</td> <td>Low/ Woderate</td> <td></td> <td>0.008</td>	13	Gr	Low/ woderate		0.063	88	635	Low/ Woderate		0.008
15 Wet Low 0.079 0.079 0.079 0.079 0.079 0.027 16 Wet High 0.006 0.006 91 Gr Low 0.022 0.130 17 Wet Low Moderate 0.002 93 R Low Moderate 0.002 18 SM High 0.001 0.001 94 R Low Moderate 0.000 22 SF High 0.002 0.002 93 Gr Low 0.000 0.000 23 Gr High 0.011 0.001 100 Gr Low 0.000 1000 24 CSS Low 0.001 1000 Gr Low 0.001 1000 Gr 0.002 1000 Gr 0.002 1000 Gr 0.001 1000 Gr 0.001 1000 Gr 0.001 1000 Gr 0.002 0.022 1000 Gr	14	CSS	Low		0.022	89	CSS	Low/ Moderate		0.002
16 Wet High 0.008 0.008 17 Wet Low 0.056 0.056 18 Gr Low 0.002 0.022 19 SM High 0.001 0.001 20 BM High 0.001 0.001 21 SM High 0.001 0.001 23 Gr High 0.002 0.002 24 CSS Low 0.006 0.006 25 GM Moderate 0.006 0.001 26 GM Moderate 0.006 0.006 27 PM High 0.013 0.013 28 D High 0.017 0.017 29 Ri High 0.016 0.016 20 SS High 0.022 0.022 31 CSS High 0.022 0.022 32 CSS High 0.026 0.026	15	Wet	Low	0.079	0.079	90	D	Low		0.020
17 Wet Low 0.056 0.966 18 Gr Low/ Moderate 0.002 93 R1 Low/ Moderate 0.002 0.002 19 SM High 0.010 0.010 0.010 0.010 21 SF High 0.002 0.002 95 R1 Low/ Moderate 0.001 0.001 22 SF High 0.002 0.002 96 CS High 0.001 0.001 24 CSS Low 0.006 0.002 0.002 97 Gr Low 0.001 26 Gr Moderate 0.052 0.052 103 Gr Low 0.001 27 CSS High 0.013 0.013 101 Gr Low 0.002 30 FM Ligh 0.017 0.017 101 Gr Low 0.020 31 CSS High 0.016 0.016 106 Gr	16	Wet	High	0.008	0.008	91	Gr	Low		0.130
18 Cir Low/ Moderate 0.002 19 SM High 0.010 0.010 20 BM High 0.020 0.002 21 SM High 0.001 0.001 22 SF High 0.002 0.002 23 Gr High 0.002 0.002 24 CSS Low 0.006 25 Gr Moderate 0.050 26 FM High 0.044 0.044 0.017 Cow 0.001 28 R High 0.052 0.052 30 FM High 0.052 0.052 31 Dard High 0.062 0.052 32 CSS High 0.062 0.052 33 Cir High 0.062 0.052 34 BM High 0.062 0.022 35 CSS High 0.049 <t< td=""><td>17</td><td>Wet</td><td>Low</td><td>0.056</td><td>0.056</td><td>92</td><td>Ri</td><td>Low/ Moderate</td><td>0.322</td><td>0.322</td></t<>	17	Wet	Low	0.056	0.056	92	Ri	Low/ Moderate	0.322	0.322
19 SM High 0.008 0.008 20 BM High 0.008 0.008 21 SM High 0.002 0.002 22 SF High 0.002 0.002 23 Gr High 0.002 0.002 24 CSS Low 0.006 25 Gr Moderate 0.0060 26 FM High 0.055 0.052 27 CSS High 0.055 0.052 28 D High 0.056 0.052 30 FM Low/Moderate 0.001 0.001 22 CSS High 0.017 0.017 100 Gr Low 0.002 31 CSS High 0.017 0.017 1016 Gr Low 0.023 32 CSS High 0.024 0.024 1016 Gr Low 0.0051 33 <	18	Gr	Low/ Moderate		0.002	03	Pi	Low/Moderate	0.002	0.002
19 SM High 0.008 0.008 20 BM High 0.010 0.010 21 SM High 0.002 0.002 22 SF High 0.002 0.002 22 SF High 0.002 0.002 22 SF High 0.002 0.002 23 Gr High 0.002 0.002 24 Gr Low 0.003 25 Gr Low 0.004 0.004 26 FM High 0.012 0.002 0.002 27 FS High 0.052 0.052 1016 Gr Low 0.001 28 P High 0.062 0.066 1066 Gr Low 0.020 33 Weit High 0.020 0.022 1016 Gr Low 0.001 34 BM High 0.020 0.022 1111 <td>10</td> <td></td> <td></td> <td>0.000</td> <td>0.002</td> <td>93</td> <td>NI Di</td> <td>LOW/ WOUGHALE</td> <td>0.002</td> <td>0.002</td>	10			0.000	0.002	93	NI Di	LOW/ WOUGHALE	0.002	0.002
20 BM High 0.010 0.010 21 SM High 0.020 0.002 22 SF High 0.001 0.001 23 Gr High 0.001 0.002 24 CSS Low 0.006 98 Gr Low 0.001 24 CSS High 0.044 0.044 0.044 0.044 0.044 0.044 27 CSS High 0.062 0.052 103 Gr Low 0.000 28 R High 0.062 0.052 103 Gr Low 0.002 31 CSS High 0.066 0.068 106 Gr Low 0.003 33 Weit High 0.020 0.022 103 Gr Low 0.026 33 Weit High 0.020 0.020 110 Gr Low 0.003 34 BM Hi	19	SM	High	0.008	0.008	94	RI	Low/ Moderate	0.299	0.299
21 SM High 0.002 0.002 22 SF High 0.002 0.002 23 Gr High 0.002 0.002 24 CSS Low 0.006 25 FM High 0.044 0.044 27 CSS High 0.055 0.052 100 Gr Low 0.001 28 D High 0.065 0.652 100 Gr Low 0.001 29 Ri High 0.013 0.013 101 Gr Low 0.023 30 FM Low/Moderate 0.022 0.024 105 Gr Low/Moderate 0.023 310 FM High 0.017 0.017 1016 Gr Low 0.023 313 FH High 0.022 0.022 110 Gr Low 0.001 32 CSS High 0.016 0.016 0.011	20	BM	High	0.010	0.010	95	Ri	Low/ Moderate	0.001	0.001
22 SF High 0.001 0.001 23 Gr High 0.002 0.002 24 CSS Low 0.006 25 Gr Moderate 0.050 26 FM High 0.044 0.044 27 CSS High 0.052 0.052 29 Ri High 0.052 0.052 30 FM Low/Moderate 0.062 31 CSS High 0.662 0.062 33 Wet High 0.062 0.062 33 Wet High 0.020 0.020 34 BM High 0.020 0.021 35 CSS High 0.049 0.049 36 Gr High 0.022 0.022 37 CSS High 0.072 0.172 38 Gr High 0.044 0.044 110 Gr	21	SM	High	0.002	0.002	96	CSS	High	0.000	0.000
23 Gr High 0.002 98 Gr Low 0.006 25 Gr Moderate 0.050 100 Gr Low 0.001 26 FM High 0.062 0.052 100 Gr Low 0.001 27 CSS High 0.062 0.052 103 Gr Low 0.001 28 D High 0.062 0.062 104 Gr Low 0.000 30 FM Low Moderate 0.020 104 Gr Low 0.020 31 CSS High 0.062 0.062 106 Gr Low 0.020 33 Wet High 0.020 0.020 106 Gr Low 0.030 36 Gr High 0.020 0.020 111 Gr Low 0.027 39 Cw Moderate 0.028 0.238 113 Gr L	22	SF	High	0.001	0.001	97	Gr	Low		0.009
24 CSS Low 0.000 25 Gr Moderate 0.000 27 Gr Moderate 0.000 27 CSS High 0.045 0.086 27 CSS High 0.045 0.086 28 D High 0.045 0.086 29 P High 0.052 0.052 30 FM Low/Moderate 0.062 0.062 31 CSS High 0.017 0.017 0.017 33 Wet High 0.020 0.020 105 Gr Low/Moderate 0.023 33 Wet High 0.040 0.049 110 Gr Low 0.0011 35 CSS High 0.022 0.022 112 CSS Low 0.016 36 Gr High 0.022 0.022 112 CSS Low 0.016 0.016 0.011 0.021	23	Gr	High	0.002	0.002	98	Gr	Low		0.001
	24	222	Low	0.002	0.002	00	Gr	Low		0.009
2.20 Int Moderate 0.004 0.004 0.004 0.004 0.004 227 CSS High 0.005 0.062 102 Gr Low 0.001 28 D High 0.013 0.013 101 Gr Low 0.001 29 Ri High 0.013 0.013 104 Gr Low 0.020 30 FM Low Moderate 0.022 106 Gr Low 0.021 31 CSS High 0.017 0.017 106 Gr Low Moderate 0.020 33 Wet High 0.020 0.020 110 Gr Low 0.045 36 Gr High 0.020 0.020 111 Gr Low 0.044 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444	24	000	LOW And another		0.090	39	0	LOW		0.006
126 IFM High 0.044 0.044 27 CSS High 0.065 0.085 28 D High 0.052 0.052 29 Ri High 0.033 0.013 30 FM Low/ Moderate 0.062 31 CSS High 0.017 0.017 32 CSS High 0.066 0.068 33 Wet High 0.069 106 Gr Low 0.051 33 Wet High 0.020 0.020 107 Gr Low 0.001 34 BM High 0.022 0.022 113 CSS Low 0.000 38 Gr High 0.072 0.072 113 CSS Low 0.020 39 P Low/Moderate 0.238 113 CSS High 0.044 114 D N/A 0.041 0.041 44	25	Gr	ivioderate		0.050	100	Gr	LOW		0.017
27 CSS High 0.085 0.085 28 D High 0.052 0.052 103 Gr Low 0.000 29 RI High 0.052 0.052 103 Gr Low 0.020 30 FM Low Moderate 0.020 104 Gr Low 0.020 31 CSS High 0.062 0.062 106 Gr Low 0.020 34 BM High 0.020 0.020 108 Gr Low 0.003 35 CSS High 0.049 0.049 111 Gr Low 0.032 38 Gr High 0.072 0.072 113 CSS Low 0.033 39 F Gr High 0.044 0.044 116 CSS Low 0.027 41 CSS High 0.044 0.044 116 CSS High 0.	26	FM	High	0.044	0.044	101	Gr	Low		0.001
28 D High 0.052 0.062 29 Ri High 0.013 0.013 0.04 Gr Low 0.002 31 CSS High 0.017 0.017 0.017 0.017 32 CSS High 0.026 0.089 106 Gr Low 0.023 34 BM High 0.049 0.049 107 Gr Low 0.030 36 Gr High 0.022 0.020 110 Gr Low 0.030 38 Gr High 0.042 0.022 111 Gr Low 0.0414 40 R1 Moderate 0.022 0.022 114 D N/A 0.414 0.414 41 CSS High 0.044 0.044 116 CSS N/A 0.041 0.041 42 CSS High 0.044 0.044 117 CSS High 0.001	27	CSS	High	0.085	0.085	102	Gr	Low		0.001
29 Ri High 0.013 0.013 30 FM Low/Moderate 0.062 0.062 31 CSS High 0.017 0.017 32 CSS High 0.020 106 Gr Low/Moderate 0.020 33 Wet High 0.066 0.086 107 Low 0.061 34 BM High 0.020 106 Gr Low 0.030 35 CSS High 0.049 0.049 111 Gr Low 0.030 38 Gr High 0.072 0.072 113 CSS Low 0.030 39 P Low/Moderate 0.022 112 CSS Low 0.021 0.031 41 CSS High 0.044 0.044 116 CSS High 0.016 0.011 42 CSS High 0.054 0.054 0.052 High 0.013	28	D	High	0.052	0.052	103	Gr	Low		0.000
20 FM Low/ Moderate 0.062 0.062 30 FM Low/ Moderate 0.062 0.062 31 CSS High 0.017 0.017 0.017 32 CSS High 0.066 0.089 106 Gr Low 0.015 33 Wet High 0.066 0.089 108 Gr Low 0.003 34 BM High 0.020 0.020 110 Gr Low 0.016 37 CSS High 0.049 0.049 111 Gr Low 0.014 38 Gr High 0.072 1072 113 CSS Low 0.002 39 P Low/ Moderate 0.022 114 D N/A 0.414 0.414 40 R1 Low/ Moderate 0.022 113 CSS High 0.001 1031 41 CSS High 0.026 0.656	20	Pi	High	0.013	0.013	104	Gr	Low		0.023
31 CSS High 0.017 0.016 0.016 0.016 0.016 0.016 0.017 0.033 0.044 0.049 0.040 0.041 0.011 <th0.011< th=""> <th145< th=""> <th141< th=""></th141<></th145<></th0.011<>	23		l nyri	0.013	0.013	104	0	Low/Madageta		0.025
31 CSS High 0.017 0.017 0.017 32 CSS High 0.089 0.07 Gr Low 0.051 33 Wet High 0.080 0.089 107 Gr Low 0.001 34 BM High 0.020 0.020 109 Gr Low 0.031 35 CSS High 0.020 0.020 110 Gr Low 0.145 37 CSS High 0.016 0.016 111 Gr Low 0.041 40 Ri Low/ Moderate 0.022 0.022 113 CSS Low 0.031 41 CSS High 0.044 0.044 116 CSS High 0.031 0.013 42 CSS High 0.052 0.052 118 CSS High 0.001 0.001 44 Wet High 0.027 0.027 122 SS	30	FIN	Low/ Moderate	0.062	0.062	105	Gr	Low/ woderate		0.020
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	31	CSS	High	0.017	0.017	106	Gr	Low/ Moderate		0.016
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	CSS	High		0.089	107	Gr	Low		0.055
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33	Wet	High	0.086	0.086	108	Gr	Low		0.001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	34	BM	High		0.030	109	Gr	Low		0.003
36GrHigh0.0200.020111GrLow0.14537CSSHigh0.0160.0200.021111GrLow0.02238GrHigh0.0720.072111CSLow0.02140RiLow/Moderate0.2230.223111DN/A0.0310.03141CSSHigh0.0440.044116CSSHigh0.0310.03142CSSHigh0.0640.064117CSSHigh0.0010.00143WetModerate0.0640.064118CSSHigh0.0010.00144WetHigh0.1370.1371137122CSSHigh0.0010.00146BMHigh0.0200.0200.020123GrHigh0.0060.00648GrHigh0.0250.025124PHigh0.0060.00650CSSHigh0.0520.052122SFHigh0.0060.00652RiHigh0.0520.052130GrModerate0.04053BMHigh0.0220.022131GrModerate0.02654CSSHigh0.0260.052132GrHigh0.00655CSSHigh0.0260.026131GrModerate0.02660CSS </td <td>35</td> <td>220</td> <td>High</td> <td>0.049</td> <td>0.049</td> <td>110</td> <td>Gr</td> <td>Low</td> <td></td> <td>0.110</td>	35	220	High	0.049	0.049	110	Gr	Low		0.110
36GrHigh0.0200.0200.02137CSSHigh0.0720.0720.07238PLow/ Moderate0.0220.02239PLow/ Moderate0.0230.23341CSSHigh0.0440.0440.04440RiLow/ Moderate0.2330.23341CSSHigh0.0440.0440.04442CSSHigh0.0660.06643WetMigh0.1370.13744WetHigh0.1370.13746BMHigh0.1270.27447DHigh0.0220.02250CSSHigh0.0220.02251GrHigh0.0370.03753BMHigh0.1330.13554CSSHigh0.0620.02257CSSHigh0.0220.02256CSSLow0.09066CSSLow0.02461CSSModerate0.02463CSSLow0.02464CSSHigh0.03777RiModerate0.02370RiModerate0.02466GrLow0.13867GrLow0.02668CSSHigh0.03771RiModerate0.04072RiModerate0.026 <td< td=""><td>33</td><td>033</td><td>T light</td><td>0.049</td><td>0.049</td><td>110</td><td>Gi</td><td>LOW</td><td></td><td>0.119</td></td<>	33	033	T light	0.049	0.049	110	Gi	LOW		0.119
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	Gr	High	0.020	0.020	111	Gr	LOW		0.145
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	CSS	High	0.016	0.016	112	CSS	Low		0.000
39 P Low/ Moderate 0.022 0.022 40 Ri Low/ Moderate 0.238 0.238 41 CSS High 0.044 0.044 42 CSS High 0.090 0.090 43 Wet Moderate 0.066 0.056 44 Wet High 0.056 0.056 45 Ri High 0.014 0.014 46 BM High 0.137 0.137 47 D High 0.052 0.052 48 Gr High 0.027 0.274 121 CSS High 0.005 0.0052 50 CSS High 0.027 1223 Gr High 0.006 52 Ri High 0.037 0.037 126 SF High 0.006 54 CSS High 0.026 0.025 126 SF High 0.0407 <t< td=""><td>38</td><td>Gr</td><td>High</td><td>0.072</td><td>0.072</td><td>113</td><td>CSS</td><td>Low</td><td></td><td>0.027</td></t<>	38	Gr	High	0.072	0.072	113	CSS	Low		0.027
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	39	Р	Low/ Moderate	0.022	0.022	114	D	N/A	0.414	0.414
101110101010111011101110111011101110111011111011 <td>40</td> <td>Ri</td> <td>Low/Moderate</td> <td>0.238</td> <td>0.238</td> <td>115</td> <td>D</td> <td>N/A</td> <td>0.031</td> <td>0.031</td>	40	Ri	Low/Moderate	0.238	0.238	115	D	N/A	0.031	0.031
41 CSS High 0.044 0.044 0.044 0.044 0.016 0.016 0.016 42 CSS High 0.064 0.064 0.064 0.064 43 Wet High 0.014 0.064 0.064 118 CSS High 0.008 0.008 44 Wet High 0.137 0.137 0.137 118 CSS High 0.013 0.013 0.013 46 BM High 0.127 0.137 0.137 121 CSS High 0.001 0.001 47 D High 0.020 0.020 0.020 123 Gr High 0.005 0.052 50 CSS High 0.127 0.127 122 SF High 0.006 0.006 52 Ri High 0.020 0.020 0.202 122 SF High 0.062 0.052 56 CSS High </td <td>41</td> <td>000</td> <td>Ligh</td> <td>0.200</td> <td>0.200</td> <td>116</td> <td>000</td> <td>High</td> <td>0.001</td> <td>0.001</td>	41	000	Ligh	0.200	0.200	116	000	High	0.001	0.001
42 CSS High 0.090 0.090 43 Wet Moderate 0.064 0.064 44 Wet High 0.056 0.056 44 Wet High 0.014 0.014 45 Ri High 0.017 0.137 46 BM High 0.137 0.137 46 BK High 0.020 0.020 48 Gr High 0.020 0.020 49 Gr High 0.022 0.020 50 CSS High 0.025 0.025 51 Gr High 0.025 0.025 52 Ri High 0.037 0.037 54 CSS High 0.032 0.083 55 CSS High 0.029 0.220 56 CSS High 0.029 0.221 57 CSS High 0.090 0.080 58 CSS Low 0.064 0.33 61	41	033	riign	0.044	0.044	110	033	rign	0.016	0.016
43 Wet Moderate 0.064 0.064 118 CSS High 0.008 0.008 44 Wet High 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.011 0.001 0.001 45 Ri High 0.137 0.137 121 CSS High 0.001 0.001 46 BM High 0.137 0.137 121 CSS High 0.006 48 Gr High 0.020 0.020 123 Gr High 0.006 50 CSS High 0.025 0.025 126 SF High 0.005 0.005 51 Gr High 0.037 0.037 127 Wet High 0.115 0.115 54 CSS High 0.022 0.022 128 SM High 0.047 0.047 56 CSS High 0.029 0.029 <td>42</td> <td>CSS</td> <td>High</td> <td>0.090</td> <td>0.090</td> <td>117</td> <td>CSS</td> <td>High</td> <td>0.001</td> <td>0.001</td>	42	CSS	High	0.090	0.090	117	CSS	High	0.001	0.001
44WetHigh 0.056 0.056 45RiHigh 0.014 0.014 0.014 0.011 0.001 47DHigh 0.137 0.137 1120 CSSHigh 0.013 0.011 47DHigh 0.274 0.274 122 CSSHigh 0.001 0.001 48GrHigh 0.022 0.020 123 GrHigh 0.006 0.006 49GrHigh 0.022 0.052 123 GrHigh 0.006 0.006 50CSSHigh 0.025 0.025 124 PHigh 0.006 0.006 51GrHigh 0.037 0.037 128 SFHigh 0.006 0.006 52RiHigh 0.032 0.022 124 PHigh 0.006 0.006 54CSSHigh 0.032 0.052 126 SMHigh 0.407 0.407 53BMHigh 0.022 0.052 130 GrModerate 0.115 0.115 54CSSHigh 0.020 0.202 131 GrModerate 0.062 57CSSHigh 0.020 0.020 132 CSSHigh 0.062 60CSSModerate 0.029 0.029 135 CSSHigh 0.028 61CSSModerate 0.029 0.29 136 CSSHigh	43	Wet	Moderate	0.064	0.064	118	CSS	High	0.008	0.008
45RiHigh 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.013 0.013 0.013 0.013 46BMHigh 0.137 0.137 0.137 0.137 127 CSS High 0.001 0.001 47DHigh 0.0274 0.274 </td <td>44</td> <td>Wet</td> <td>High</td> <td>0.056</td> <td>0.056</td> <td>119</td> <td>CSS</td> <td>High</td> <td>0.001</td> <td>0.001</td>	44	Wet	High	0.056	0.056	119	CSS	High	0.001	0.001
46BMHigh0.1370.1370.13747DHigh0.2740.27448GrHigh0.0200.02048GrHigh0.0220.02049GrHigh0.0220.02250CSSHigh0.0270.12751GrHigh0.0270.12753BMHigh0.0370.03754CSSHigh0.0370.03755CSSHigh0.0520.05256CSSHigh0.0620.05257CSSHigh0.0620.05257CSSHigh0.0220.20257CSSHigh0.0220.20257CSSHigh0.0290.02958CSSLow/Moderate0.04460CSSModerate0.0290.02961CSSLow0.0840.08463CSSLow0.027913365CSSLow0.0440.04464CSSHigh0.03365CSSLow0.02466GrLow0.02770RModerate0.02370RLow0.03771RiLow0.03772RiModerate0.00874CSSModerate0.00675CSSModerate0.00674CSSM	45	Ri	Hiah	0.014	0.014	120	CSS	Hiah	0.013	0.013
47 D High 0.127 0.127 121 CSS High 0.081 48 Gr High 0.020 0.020 122 CSS High 0.062 49 Gr High 0.127 0.127 122 CSS High 0.008 50 CSS High 0.127 0.127 124 P High 0.006 0.008 51 Gr High 0.127 0.127 124 P High 0.006 0.006 52 Ri High 0.037 0.037 127 Wet High 0.006 0.006 55 CSS High 0.022 0.022 130 Gr Moderate 0.013 58 CSS Low 0.026 0.022 133 CSS High 0.006 61 CSS Moderate 0.029 0.029 132 CSS High 0.004 62 CSS	46	BM	High	0.137	0.137	121	220	High		0.001
47Dnigh 0.274 0.274 122 CSSrigh 0.006 48GrHigh 0.020 0.020 123 GrHigh 0.008 49GrHigh 0.052 0.052 123 GrHigh 0.008 50CSSHigh 0.127 0.127 124 PHigh 0.005 51GrHigh 0.025 0.025 124 PHigh 0.006 0.006 52RiHigh 0.137 0.037 0.037 128 SFHigh 0.007 0.407 53BMHigh 0.135 0.135 129 FMHigh 0.407 0.407 0.407 54CSSHigh 0.062 0.052 0.052 130 GrModerate 0.115 0.115 57CSSHigh 0.020 0.202 130 GrModerate 0.062 133 CSSHigh 0.008 58CSSLow 0.044 0.044 0.441 133 CSSHigh 0.026 60CSSModerate 0.029 0.33 138 CSSHigh 0.026 61CSSLow 0.044 0.044 137 CSSHigh 0.008 66GrLow 0.021 138 CSSHigh 0.008 66GrLow 0.023 144 DLow 0.024 68CSSHigh 0.037 </td <td>40</td> <td>Divi</td> <td>r ligh Lliab</td> <td>0.137</td> <td>0.137</td> <td>121</td> <td>000</td> <td>r ligh</td> <td></td> <td>0.001</td>	40	Divi	r ligh Lliab	0.137	0.137	121	000	r ligh		0.001
48GrHigh0.0200.020123GrHigh0.00849GrHigh0.0520.052124PHigh1.5501.55050CSSHigh0.0270.127125SFHigh0.0060.00652RiHigh0.0370.037126SMHigh0.0060.00653BMHigh0.0350.037127WetHigh0.4070.40753BMHigh0.0520.052128CSSHigh0.4070.40754CSSHigh0.0220.022129FMHigh0.4070.40755CSSHigh0.0220.022131GrModerate0.06257CSSHigh0.0290.029132CSSHigh0.00358CSSLow0.0960.096134CSSHigh0.02861CSSHigh0.0840.084133CSSHigh0.02462CSSLow0.045140MHigh0.00464CSSModerate0.027140MHigh0.00866GrLow0.028144DLow3.79565CSSLow0.027147DN/A0.02770RiLow0.0370.037147DN/A0.02771RiLow0.037 </td <td>47</td> <td>D</td> <td>High</td> <td>0.274</td> <td>0.274</td> <td>122</td> <td>688</td> <td>High</td> <td></td> <td>0.066</td>	47	D	High	0.274	0.274	122	688	High		0.066
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48	Gr	High	0.020	0.020	123	Gr	High		0.008
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	Gr	High	0.052	0.052	124	Р	High	1.550	1.550
51GrHigh 0.025 0.025 52RiHigh 0.037 0.037 0.037 53BMHigh 0.135 0.135 54CSSHigh 0.083 0.083 55CSSHigh 0.052 0.052 57CSSHigh 0.020 0.202 57CSSHigh 0.090 0.090 58CSSLow/Moderate 0.044 0.044 59WetHigh 0.096 0.096 60CSSModerate 0.029 0.229 61CSSModerate 0.029 0.229 63CSSModerate 0.037 64CSSModerate 0.0279 65CSSLow 0.043 66GrLow 0.045 66GrLow 0.0279 70RiModerate 0.000 71RiLow 0.037 73RiLow 0.056 75CSSModerate 0.0072 74CSSModerate 0.0072 75CSSModerate 0.026 74RiLow 0.056 75CSSModerate 0.056 72RiLow 0.076 74CSSModerate 0.056 75CSSModerate 0.056 75CSSModerate 0.056 75CSSModerate 0.056 74CSS <t< td=""><td>50</td><td>CSS</td><td>High</td><td>0.127</td><td>0.127</td><td>125</td><td>SF</td><td>High</td><td>0.005</td><td>0.005</td></t<>	50	CSS	High	0.127	0.127	125	SF	High	0.005	0.005
52 Ri High 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.032 0.032 0.032 0.032 0.040 0.407 0.403 0.063 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054<	51	Gr	High	0.025	0.025	126	SM	High	0.006	0.006
52 Ingit 0.037 0.033 0.063 128 CSS High 0.115 0.116 0.117 148 <td>50</td> <td>Pi</td> <td>High</td> <td>0.027</td> <td>0.027</td> <td>107</td> <td>W/et</td> <td>High</td> <td>0.407</td> <td>0.407</td>	50	Pi	High	0.027	0.027	107	W/et	High	0.407	0.407
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	52	DM	r ngn High	0.037	0.037	127	11EL	r ngn High	0.407	0.407
54 CSS High 0.083 0.083 129 FM High 2.588 2.588 55 CSS High 0.022 0.002 0.134 0.134 56 CSS High 0.020 0.202 130 Gr Moderate 0.134 57 CSS High 0.090 0.090 132 CSS High 0.063 58 CSS Low/ Moderate 0.044 0.044 133 CSS High 0.026 60 CSS Moderate 0.029 135 CSS High 0.026 61 CSS Moderate 0.029 135 CSS High 0.026 63 CSS Moderate 0.033 138 CSS High 0.004 64 CSS Low 0.425 140 Mederate 0.024 68 CSS High 0.138 CSS Moderate 0.0024 69 <	53	BIVI	rign	0.135	0.135	128	655	rign	0.115	0.115
55 CSS High 0.052 0.052 130 Gr Moderate 0.134 56 CSS High 0.202 0.202 131 Gr Moderate 0.062 57 CSS High 0.090 0.090 132 CSS High 0.003 59 Wet High 0.096 0.096 133 CSS High 0.026 60 CSS Moderate 0.029 0.029 135 CSS High 0.0028 61 CSS Moderate 0.033 136 CSS High 0.004 63 CSS Moderate 0.0279 138 CSS High 0.004 64 CSS Moderate 0.0279 139 Ri Low 3.795 65 CSS Low 0.621 1.413 141 M High 0.008 66 Gr Low 0.023 142 CSS Moderate <td>54</td> <td>CSS</td> <td>High</td> <td>0.083</td> <td>0.083</td> <td>129</td> <td>FM</td> <td>High</td> <td>2.588</td> <td>2.588</td>	54	CSS	High	0.083	0.083	129	FM	High	2.588	2.588
56 CSS High 0.202 0.202 57 CSS High 0.090 0.090 58 CSS Low/ Moderate 0.044 0.044 59 Wet High 0.029 0.029 61 CSS Moderate 0.029 0.029 61 CSS High 0.084 0.084 62 CSS Low 0.054 63 CSS Moderate 0.033 64 CSS Moderate 0.021 65 CSS Low 0.045 66 Gr Low 1.413 67 Gr Low 1.413 68 CSS High 0.023 70 Ri Moderate 0.0023 70 Ri Moderate 0.023 72 Ri Moderate 0.026 73 Ri Low 0.115 74 CSS Moderate 0.026	55	CSS	High	0.052	0.052	130	Gr	Moderate		0.134
57 CSS High 0.090 0.090 58 CSS Low/ Moderate 0.044 0.044 132 CSS High 0.003 59 Wet High 0.096 0.096 133 CSS High 0.026 60 CSS Moderate 0.029 134 CSS High 0.026 61 CSS High 0.084 0.084 134 CSS High 0.026 63 CSS Moderate 0.033 138 CSS High 0.004 63 CSS Moderate 0.027 138 CSS High 0.004 64 CSS Low 0.1413 141 M High 0.008 66 Gr Low 0.138 CSS Moderate 0.0024 68 CSS High 0.138 142 CSS Moderate 0.006 71 Ri Moderate 0.008 0.00	56	CSS	High	0.202	0.202	131	Gr	Moderate		0.062
57. 58. CSS Low/ Moderate 0.044 0.044 0.044 0.044 0.044 0.044 0.043 133 CSS High 0.003 0.026 0.033 133 CSS High 0.028 0.021 135 CSS High 0.028 0.021 135 CSS High 0.028 0.021 135 CSS High 0.028 0.001 0.028 135 CSS High 0.028 0.001 0.026 0.001 0.028 0.001 0.028 0.021 135 CSS High 0.028 0.001 0.026 0.001 0.021 135 CSS High 0.0026 0.001 0.001 0.001 0.001 0.004 0.023 138 CSS High 0.004 0.024 138 CSS High 0.008 0.008 0.008 140 M M derate 0.004 0.024 141 M High 0.008 0.008 142 CSS Moderate	57	CSS	High	0.090	0.090	132	CSS	High		0.003
50 CSS Low inducitie 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.026 135 CSS High 0.026 0.026 137 CSS High 0.001 0.026 137 CSS High 0.004 0.040 138 CSS High 0.004 0.040 138 CSS High 0.004 0.040 138 CSS High 0.004 0.040 0.024 140 M High 0.008 0.024 142 CSS Moderate 0.0024	51	C000	Low/Moderate	0.050	0.030	102	C 22	High		0.003
59 Wet High 0.096 0.096 0.096 60 CSS Moderate 0.029 0.029 134 CSS High 0.026 61 CSS Moderate 0.029 0.029 135 CSS High 0.028 62 CSS Low 0.054 136 CSS High 0.004 63 CSS Moderate 0.033 138 CSS High 0.004 64 CSS Low 0.045 140 M High 0.004 66 Gr Low 0.045 140 M High 0.008 0.088 66 Gr Low 0.138 CSS Moderate 0.0023 70 Ri Moderate 0.008 0.008 144 D Low 0.022 70 Ri Moderate 0.006 0.037 0.037 147 D N/A 0.021 73	38	000	Low/ woderate	0.044	0.044	133	000	r ngn		0.083
60 CSS Moderate 0.029 0.029 135 CSS High 0.028 61 CSS High 0.084 0.084 0.084 0.084 0.014 136 CSS High 0.001 62 CSS Low 0.054 136 CSS High 0.004 63 CSS Moderate 0.033 138 CSS High 0.004 64 CSS Low 0.045 141 M High 0.008 0.008 66 Gr Low 1.413 141 M High 0.108 0.018 67 Gr Low 0.621 142 CSS Moderate 0.022 70 Ri Moderate 0.008 0.008 144 D Low 0.022 70 Ri Moderate 0.008 0.008 145 D Low 0.001 73 Ri Low 0.115 0.	59	vvet	High	0.096	0.096	134	CSS	High		0.026
61 CSS High 0.084 0.084 62 CSS Low 0.054 136 CSS High 0.001 63 CSS Moderate 0.033 137 CSS High 0.040 64 CSS Moderate 0.279 138 CSS High 0.0040 65 CSS Low 0.445 138 CSS High 0.0048 66 Gr Low 1.413 K Low 3.795 3.795 67 Gr Low 1.413 High 0.008 0.088 0.088 66 Gr Low 0.621 140 M High 0.108 0.108 67 Gr Low 0.023 141 M High 0.024 68 CSS High 0.138 143 CSS Moderate 0.006 71 Ri Moderate 0.008 0.008 144 D	60	CSS	Moderate	0.029	0.029	135	CSS	High		0.028
62 CSS Low 0.054 63 CSS Moderate 0.033 64 CSS Moderate 0.279 65 CSS Low 0.045 66 Gr Low 0.045 66 Gr Low 0.419 67 Gr Low 0.621 68 CSS High 0.108 69 Gr Low 0.623 70 Ri Moderate 0.008 71 Ri Low/ Moderate 0.400 71 Ri Low 0.115 72 Ri Low 0.037 73 Ri Low 0.056 74 CSS Moderate 0.006 75 CSS Moderate 0.006 75 CSS Moderate 0.056 75 CSS Moderate 0.008	61	CSS	High	0.084	0.084	136	CSS	High		0.001
	62	CSS	Low		0.054	137	CSS	High		0.040
Col Col Colorate Colorate <thcolorate< th=""> Colora</thcolorate<>	63	CSS	Moderate		0.033	139	CSS	High		0.004
04 053 Invoderate 0.279 139 Ri Low 3.795 3.795 65 CSS Low 0.045 140 M High 0.088 0.088 66 Gr Low 0.621 140 M High 0.088 0.088 67 Gr Low 0.621 141 M High 0.108 0.108 68 CSS High 0.138 142 CSS Moderate 0.0024 69 Gr Low 0.023 144 D Low 0.021 70 Ri Low/Moderate 0.400 0.400 145 D Low 0.001 71 Ri Low 0.115 0.115 147 D N/A 0.021 73 Ri Low 0.115 0.115 148 D N/A 0.001 74 CSS Moderate 0.006 0.008 150 N/A	03	000	Moderate		0.033	130	Di	r iigii Low	3 705	0.004
65 CSS Low 0.045 66 Gr Low 1.413 67 Gr Low 1.413 67 Gr Low 0.621 68 CSS High 0.138 69 Gr Low 0.023 70 Ri Moderate 0.008 71 Ri Low 0.415 72 Ri Moderate/High 0.037 73 Ri Low 0.115 74 CSS Moderate 0.006 75 CSS Moderate 0.008 75 D N/A 0.017 148 D N/A 0.001 147 D N/A 0.001 74 CSS Moderate 0.006 75 CSS Moderate 0.008	64	633	woderate		0.279	139	rti	LOW	3.795	3.795
66 Gr Low 1.413 67 Gr Low 0.621 68 CSS High 0.138 69 Gr Low 0.023 70 Ri Moderate 0.008 71 Ri Low/ Moderate 0.400 71 Ri Low 0.115 73 Ri Low 0.015 74 CSS Moderate 0.006 75 CSS Moderate 0.006 75 CSS Moderate 0.006 75 CSS Moderate 0.006	65	CSS	Low		0.045	140	M	High	0.088	0.088
67 Gr Low 0.621 68 CSS High 0.138 69 Gr Low 0.023 70 Ri Moderate 0.008 71 Ri Low 0.037 72 Ri Moderate/High 0.037 73 Ri Low 0.115 74 CSS Moderate 0.006 75 CSS Moderate 0.008	66	Gr	Low		1.413	141	M	High	0.108	0.108
68 CSS High 0.138 143 CSS Moderate 0.002 69 Gr Low 0.023 143 CSS Moderate 0.002 70 Ri Moderate 0.008 0.008 144 D Low 0.029 71 Ri Low/Moderate 0.400 0.400 146 D N/A 0.725 72 Ri Moderate/High 0.037 0.037 147 D N/A 0.725 73 Ri Low 0.115 0.115 148 D N/A 0.0017 74 CSS Moderate 0.056 0.056 150 D N/A 0.299 75 CSS Moderate 0.008 150 N/A 0.009	67	Gr	Low		0.621	142	CSS	Moderate		0.024
69 Gr Low 0.023 144 D Low 0.029 70 Ri Moderate 0.000 144 D Low 0.029 71 Ri Low/Moderate 0.400 0.400 144 D Low 0.029 72 Ri Moderate/High 0.037 0.037 145 D N/A 0.001 73 Ri Low 0.115 0.115 148 D N/A 0.001 74 CSS Moderate 0.056 0.056 149 N/A 0.299 150 D N/A 0.009 151 D N/A 0.009	68	CSS	High		0.138	1/3	CSS	Moderate		0.006
03 03 03 04 0.023 144 D Low 0.029 70 Ri Moderate 0.008 0.008 145 D Low 0.001 71 Ri Low 0.0037 0.337 145 D Low 0.001 72 Ri Moderate/High 0.037 0.037 147 D N/A 0.725 73 Ri Low 0.115 0.115 148 D N/A 0.001 74 CSS Moderate 0.056 0.056 149 D N/A 0.299 75 CSS Moderate 0.008 150 N/A 0.009	60	000	Low		0.130	143	000	Low		0.000
r/0 Ri Moderate 0.008 0.008 145 D Low 0.001 71 Ri Low/ Moderate 0.400 0.400 146 D N/A 0.725 72 Ri Moderate/High 0.037 0.037 147 D N/A 0.001 73 Ri Low 0.115 0.115 148 D N/A 0.0017 74 CSS Moderate 0.056 0.056 149 D N/A 0.299 75 CSS Moderate 0.008 150 D N/A 0.009	69	G	LOW		0.023	144	U	LOW		0.029
71 Ri Low/ Moderate 0.400 0.400 146 D N/A 0.725 72 Ri Moderate/High 0.037 0.037 147 D N/A 0.001 73 Ri Low 0.115 0.115 148 D N/A 0.001 74 CSS Moderate 0.056 0.056 149 D N/A 0.299 75 CSS Moderate 0.008 150 D N/A 0.009 151 D N/A 0.183 0.018 0.183 0.183	70	кі	woderate	0.008	0.008	145	U	LOW		0.001
72 Ri Moderate/High 0.037 0.037 147 D N/A 0.001 73 Ri Low 0.115 0.115 148 D N/A 0.017 74 CSS Moderate 0.056 0.056 149 D N/A 0.299 75 CSS Moderate 0.008 150 D N/A 0.009 151 D N/A 0.183 0.017	71	Ri	Low/ Moderate	0.400	0.400	146	D	N/A		0.725
73 Ri Low 0.115 0.115 148 D N/A 0.017 74 CSS Moderate 0.056 0.056 149 D N/A 0.299 75 CSS Moderate 0.008 150 D N/A 0.009 151 D N/A 0.183 0.183	72	Ri	Moderate/High	0.037	0.037	147	D	N/A		0.001
74 CSS Moderate 0.056 0.056 149 D N/A 0.299 75 CSS Moderate 0.008 150 D N/A 0.099 151 D N/A 0.008 151 D N/A 0.009	73	Ri	Low	0 115	0.115	148	D	N/A		0.017
reg 0.000 0.000 0.000 0.000 0.000 0.009 75 CSS Moderate 0.008 150 N/A 0.009 151 D N/A 0.0183 0.183	74	C 99	Modorate	0.056	0.056	140	- D	N/A		0.000
/> /> /> /> //> //> 0.009 151 D N/A 0.009	75	000	Madarat	0.000	0.000	149		N/A		0.299
151 D N/A 0.183	/5	635	ivioderate		0.008	150	U	IN/A		0.009
						151	D	N/A		0.183
								-		

*PL	ANT COMMUNITY
BM	=Brackish Marsh
Ch=	Chaparral
CSS	S=Coastal Sage Scrub
D=l	Jrban/Commercial
FM	=Freshwater Marsh
Gr=	Grassland
M=	Marine Mudflats
OP=	Ornamental Plantings
OPF	R=Mixed Ornamental and Riparian
P=F	Rond or Creek
Ri=	Riparian
SF=	Sandy Flats
SM	=Salt Marsh
W='	Woodland
Wet	=Wet Meadow, Seep, Vernal Pool

Table 4. Corresponding Table for Impacts Figure: Vegetation and acreage data for each polygon:

10510 4. 001	responding rus		DFG	TOTAL	Jugi		n polygon.		DFG	TOTAL
POLYGON			IMPACTS	IMPACT		POLYGON			IMPACTS	IMPACT
ID	COMMUNITY*	QUALITY	(acres)	(acres)		ID	COMMUNITY*	QUALITY	(acres)	(acres)
1	Ch	Moderate		0.032		76	OPR	Low	1.216	1.216
2	Ri	Low		0.070		77	FM	Low	0.180	0.180
3	Gr	Moderate		0.024		78	FM	Low	0.017	0.017
4	CSS	Low		0.004		79	Ri	Low	0.033	0.033
5	Gr	Low		0.031		80	FM	Low	0.035	0.035
6	Ri	Low	0.026	0.026		81	Ri	Low	0.164	0.164
7	Ri	Moderate	0.001	0.001		82	OPR	Low	1.387	1.387
8	Gr	Low/ Moderate		0.002		83	OPR	Moderate/High	0.014	0.014
9	Gr	Moderate		0.058		84	Ri	Moderate/High	0.061	0.061
10	Gr	Low/ Moderate		0.052		85	OP	Low		0.050
11	Gr	Low		0.080		86	D	N/A	0.289	0.289
12	Gr	Moderate		0.014		87	D	N/A	0.282	0.282
13	Gr	Low/ Moderate		0.063		88	CSS	Low/ Moderate		0.008
14	CSS	Low		0.022		89	CSS	Low/ Moderate		0.002
15	Wet	Low	0.079	0.079		90	D	Low		0.020
16	Wet	High	0.008	0.008		91	Gr	Low		0.130
17	Wet	Low	0.056	0.056		92	Ri	Low/ Moderate	0.322	0.322
18	Gr	Low/ Moderate		0.002		93	Ri	Low/ Moderate	0.002	0.002
19	SM	High	0.008	0.008		94	Ri	Low/ Moderate	0.299	0.299
20	BM	High	0.010	0.010		95	Ri	Low/ Moderate	0.001	0.001
21	SM	High	0.002	0.002		96	CSS	High	0.000	0.000
22	SF	High	0.001	0.001		97	Gr	Low		0.009
23	Gr	High	0.002	0.002		98	Gr	Low		0.001
24	CSS	Low		0.096		99	Gr	Low		0.008
25	Gr	Moderate		0.050		100	Gr	Low		0.017
26	FM	High	0.044	0.044		101	Gr	Low		0.001
27	CSS	High	0.085	0.085		102	Gr	Low		0.001
28	D	High	0.052	0.052		103	Gr	LOW		0.000
29	RI	High	0.013	0.013		104	Gr O-	LOW		0.023
30	FM	Low/ woderate	0.062	0.062		105	Gr O-	Low/ Woderate		0.020
31	655	High	0.017	0.017		106	Gr	Low/ woderate		0.016
32	USS Wet	High	0.086	0.089		107	Gr	Low		0.005
33	DM	High	0.060	0.080		100	Gr	Low		0.001
25	DIVI	High	0.040	0.030		109	Gr	Low		0.003
36	Gr	High	0.049	0.049		110	Gr	Low		0.119
37		High	0.020	0.020		112		Low		0.145
38	Gr	High	0.010	0.010		112	CSS	Low		0.000
39	P	Low/ Moderate	0.072	0.072		113	000 D	N/A	0 414	0.027
40	Ri	Low/ Moderate	0.022	0.022		115	D	N/A	0.031	0.031
41	CSS	High	0.044	0.044		116	CSS	High	0.016	0.016
42	CSS	High	0.090	0.090		117	CSS	High	0.001	0.001
43	Wet	Moderate	0.064	0.064		118	CSS	High	0.008	0.008
44	Wet	High	0.056	0.056		119	CSS	High	0.001	0.001
45	Ri	High	0.014	0.014		120	CSS	High	0.013	0.013
46	BM	High	0.137	0.137		121	CSS	High		0.001
47	D	High	0.274	0.274		122	CSS	High		0.066
48	Gr	High	0.020	0.020		123	Gr	High		0.008
49	Gr	High	0.052	0.052		124	Р	High	1.550	1.550
50	CSS	High	0.127	0.127		125	SF	High	0.005	0.005
51	Gr	High	0.025	0.025		126	SM	High	0.006	0.006
52	Ri	High	0.037	0.037		127	Wet	High	0.407	0.407
53	BM	High	0.135	0.135		128	CSS	High	0.115	0.115
54	CSS	High	0.083	0.083		129	FM	High	2.588	2.588
55	CSS	High	0.052	0.052		130	Gr	Moderate		0.134
56	CSS	High	0.202	0.202		131	Gr	Moderate		0.062
57	CSS	High	0.090	0.090		132	CSS	High		0.003
58	CSS	Low/ Moderate	0.044	0.044		133	CSS	High		0.083
59	Wet	High	0.096	0.096		134	CSS	High		0.026
60	CSS	Moderate	0.029	0.029		135	CSS	High		0.028
61	CSS	High	0.084	0.084		136	CSS	High		0.001
62	CSS	Low		0.054		137	CSS	High		0.040
63	CSS	Moderate		0.033		138	CSS	High		0.004
64	CSS	Moderate		0.279		139	Ri	Low	3.795	3.795
65	CSS	Low		0.045		140	M	High	0.088	0.088
66	Gr	Low		1.413		141	М	High	0.108	0.108
67	Gr	Low		0.621		142	CSS	Moderate		0.024
68	CSS	High		0.138		143	CSS	Moderate		0.006
69	Gr	Low		0.023		144	D	Low		0.029
70	Ri	Moderate	0.008	0.008		145	D	Low		0.001
71	KI	Low/ Moderate	0.400	0.400		146	ט	N/A		0.725
/2	KI Di	woderate/High	0.037	0.037		147	U D	N/A		0.001
/3	KI	LOW	0.115	0.115		148	ט	N/A		0.017
/4	000	IVIODERATE	0.056	0.056		149	ע	IN/A		0.299
/5	633	woderate		0.008		150	<u>ט</u>	IN/A		0.009
						101			16 797	0.183
						1		I AVIEV AUNES	10.707	££.J£U

*PLANT COMMUNITY	
BM=Brackish Marsh	
Ch=Chaparral	
CSS=Coastal Sage Scrub	
D=Urban/Commercial	
FM=Freshwater Marsh	
Gr=Grassland	
M=Marine Mudflats	
OP=Ornamental Plantings	
OPR=Mixed Ornamental and Riparia	n
P=Rond or Creek	
Ri=Riparian	
SF=Sandy Flats	
SM=Salt Marsh	
W=Woodland	
Wet=Wet Meadow, Seep, Vernal Poo	ı

Γ