CITY OF NEWPORT BEACH · 2023 ANNUAL REPORT ON

Drinking Water Quality

Data from 2022

Your 2023 Water Quality Report

The City of Newport Beach Utilities Department has provided an annual Water Quality Report to customers since 1990. **This year's report covers 2022 drinking water quality testing and reporting.**

Your City of Newport Beach Utilities Department is proud to provide your drinking water while vigilantly safeguarding your water supply. As in years past, the water delivered to your home meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (CalDDW) are the agencies responsible for establishing and enforcing drinking water quality standards.

In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards. For example, our groundwater and imported treated surface water are

tested for unregulated chemicals in our water supply. Unregulated chemical monitoring helps federal and state agencies determine where certain chemicals occur and whether new standards need to be established. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Some of our data, though representative, are more than one year old.

Constant Monitoring Ensures Continued Excellence

Introduction

The City of Newport Beach's drinking water is constantly monitored from source to tap for regulated and unregulated chemicals. Our drinking water quality testing programs are carried out by professional and certified laboratories. Testing is performed in our reservoirs and throughout our distribution system, at our groundwater wells and in the basin, from our imported water connections, and at the water treatment plants.

Sources of Supply

The City of Newport Beach Utilities Department manages the City's water sources. Our water is supplied by a blend of about 85% groundwater and 15% imported surface water. Newport's groundwater comes from four groundwater wells located in the City of Fountain Valley then pumped to a reservoir in Newport Beach. The groundwater basin is actively managed by Orange County Water District (OCWD, www.ocwd.com). Groundwater comes from a natural underground aquifer, layered with sand and gravel, that works as a natural water filter. The water is replenished with water from the Santa Ana River, local rainfall and imported water. The groundwater basin is 350 square miles and lies beneath north and central Orange County from Irvine to the Los Angeles County border, and from Yorba Linda to the Pacific Ocean. More than 20 cities and retail water districts pump from the basin to provide water to homes and businesses. The imported surface water is primarily from the Colorado Aqueduct (Colorado River) and sometimes water from the California Aqueduct (Northern California). This is managed by the Metropolitan Water District of Southern California (MWDSC, www.mwdh20.com), is treated at the Diemer Water Treatment Plant in Yorba Linda, and imported into Orange County by the Municipal Water District of Orange County (MWDOC, www.mwdoc.com).

There are some areas in the City of Newport Beach that receive drinking water from an outside water agency, including Mesa Water District and Irvine Ranch Water District. Please check your water bill to confirm which water agency provides your drinking water and refer to their water quality report. You may also contact the City of Newport Beach Utilities Department for clarification on whether this water quality report pertains to the drinking water provided to your home or business.

Newport Beach's Water Future

For years, the City of Newport Beach and Orange County have enjoyed an abundant, seemingly endless supply of high-quality water. However, as water demands and

availability change, we must be even more conscientious about our water supply and maximize the efficient use of this precious natural resource.

Our partners at OCWD implement and operate new and innovative water management and supply development programs. This includes water recycling, wetlands expansion, recharge facility construction, groundwater cleanup projects, storage programs, and water education programs for children through adults. Our other partner, MWDOC, offers rebates and incentives to promote water-use efficiency and provides water education programs. Both agencies work cooperatively with the

City of Newport Beach and other water agencies to complete studies to assess water reliability in Orange County. These efforts are helping enhance long-term countywide water reliability and water quality, to establish a healthy water future for the City of Newport Beach and Orange County.

The City of Newport Beach Utilities Department and your local and regional water agencies are committed to making the necessary investments today in new water management projects to ensure an abundant and high-quality water supply for generations to come.

Basic Information About Drinking Water Contaminants

The sources of drinking water (for both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the layers of the ground it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production or mining activities.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming.
- ◆ Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

To ensure that tap water is safe to drink, USEPA and the CalDDW set regulations limiting the amount of certain contaminants in water provided by public water systems.

The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Immunocompromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people, such as those with cancer who are undergoing chemotherapy, persons who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water Hotline at (800) 426-4791, or on the web at www.epa.gov/safewater.

Chloramines

The City imports water from MWDSC that is treated with chloramines, a combination of chlorine and ammonia, as its drinking water disinfectant. Chloramines are effective killers of bacteria and other microorganisms that may cause disease. Chloramines form fewer disinfection by-products and have no odor when used properly. People who use kidney dialysis machines may want to take special

precautions and consult their physician for the appropriate type of water treatment.

Customers who maintain fishponds, tanks or aquaria should also make necessary adjustments in water quality treatment, as these disinfectants are toxic to fish.

For further information or if you have any questions about chloramines please call (949) 644-3011.

Learn More About Your Water's Quality

For information about this report or your water quality information in general, please contact the City of Newport Beach Utilities Department at (949) 644-3011.

The City of Newport Beach Council meetings are held on the second and fourth Tuesday of each month and are open to the public. Meetings are held at the Council Chambers located at 100 Civic Center Drive, Newport Beach. Please feel free to participate in these meetings.

For more information about the health effects of the listed contaminants in the following tables, call the USEPA hotline at (800) 426-4791.

We Comply with All State & Federal Water Quality Regulations

Disinfectants and Disinfection Byproducts

Disinfection of drinking water was one of the major public health advances in the 20^{th} century. Disinfection was a major factor in reducing waterborne disease epidemics caused by pathogenic bacteria and viruses, and it remains an essential part of drinking water treatment today.

Chlorine disinfection has almost completely eliminated from our lives the risks of microbial waterborne diseases. Chlorine is added to your drinking water at the source of supply (groundwater well or surface water treatment plant). Enough chlorine is added so that it does not completely dissipate through the distribution system pipes. This "residual" chlorine helps to prevent the growth of bacteria in the pipes that carry drinking water from the source into your home.

However, chlorine can react with naturally-occurring materials in the water to form unintended chemical byproducts, called disinfection byproducts (DBPs), which may pose health risks. A major challenge is how to balance the risks from microbial pathogens and DBPs. It is important to provide protection from these microbial pathogens while simultaneously ensuring decreasing health risks from disinfection byproducts. The Safe Drinking Water Act requires the USEPA to develop rules to achieve these goals.

Chart Legend

What are Water Quality Standards?

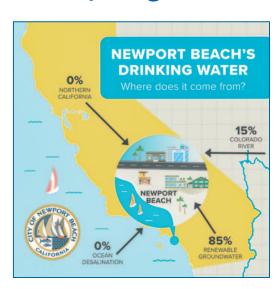
Drinking water standards established by USEPA and CalDDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The charts in this report show the following types of water quality standards:

- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Maximum Residual Disinfectant Level (MRDL): The highest level
 of a disinfectant allowed in drinking water. There is convincing
 evidence that addition of a disinfectant is necessary for control
 of microbial contaminants.
- Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water.
- Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.
- Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and CalDDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The charts in this report include three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health.
 PHGs are set by the California Environmental Protection Agency.


How are Contaminants Measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- parts per million (ppm) or milligrams per liter (mg/L)
- parts per billion (ppb) or micrograms per liter (µg/L)
- parts per trillion (ppt) or nanograms per liter (ng/L)

Trihalomethanes (THMs) and Haloacetic Acids (HAAs) are the most common and most studied DBPs found in drinking water treated with chlorine. In 1979, the USEPA set the maximum amount of total THMs allowed in drinking water at 100 parts per billion as an annual running average. Effective in January 2002, the Stage 1 Disinfectants / Disinfection Byproducts Rule lowered the total THM maximum annual average level to 80 parts per billion and added HAAs to the list of regulated chemicals in drinking water. Your drinking water complies with the Stage 1 Disinfectants / Disinfection Byproducts Rule.

Stage 2 of the regulation was finalized by USEPA in 2006, which further controls allowable levels of DBPs in drinking water without compromising disinfection itself. A required distribution system evaluation was completed in 2008 and a Stage 2 monitoring plan has been approved by CalDDW. Full Stage 2 compliance began in 2012.

Chemical	MCL	PHG (MCLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Chemical
Radiologicals – Tested in 202	20 and 2022					
Gross Alpha Particle Activity (pCi/L)	15	(0)	ND	ND - 3	No	Erosion of Natural Deposits
Gross Beta Particle Activity (pCi/L)	50	(0)	6	ND - 9	No	Decay of Natural and Man-made Deposits
Uranium (pCi/L)	20	0.43	2	1 – 3	No	Erosion of Natural Deposits
Inorganic Chemicals – Tested	d in 2022					
Aluminum (ppm)	1	0.6	0.14	0.085 - 0.21	No	Treatment Process Residue, Natural Deposits
Barium (ppm)	1	2	0.107	0.107	No	Refinery Discharge, Erosion of Natural Deposits
Fluoride (ppm)	2	1	0.7	0.7 - 0.8	No	Water Additive for Dental Health
Secondary Standards* – Tes	ted in 2022					
Aluminum (ppb)	200*	600	140	85 – 210	No	Treatment Process Residue, Natural Deposits
Chloride (ppm)	500*	n/a	101	98 – 104	No	Runoff or Leaching from Natural Deposits
Color (Color Units)	15*	n/a	1	1	No	Naturally-occurring Organic Materials
Odor (Threshold Odor Number)	3*	n/a	3	3	No	Naturally-occurring Organic Materials
Specific Conductance (µmho/cm)	1,600*	n/a	988	965 - 1,010	No	Substances that Form Ions in Water
Sulfate (ppm)	500*	n/a	221	213 – 229	No	Runoff or Leaching from Natural Deposits
Total Dissolved Solids (ppm)	1,000*	n/a	628	608 - 648	No	Runoff or Leaching from Natural Deposits
Unregulated Chemicals – Tes	sted in 2022					
Alkalinity, total as CaCO ₃ (ppm)	Not Regulated	n/a	126	125 – 127	n/a	Runoff or Leaching from Natural Deposits
Boron (ppm)	NL = 1	n/a	0.13	0.13	n/a	Runoff or Leaching from Natural Deposits
Calcium (ppm)	Not Regulated	n/a	68	66 – 70	n/a	Runoff or Leaching from Natural Deposits
Hardness, total as CaCO ₃ (ppm)	Not Regulated	n/a	278	275 – 281	n/a	Runoff or Leaching from Natural Deposits
Hardness, total (grains/gallon)	Not Regulated	n/a	16	16	n/a	Runoff or Leaching from Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	25	24 – 26	n/a	Runoff or Leaching from Natural Deposits
pH (pH units)	Not Regulated	n/a	8.1	8.1	n/a	Hydrogen Ion Concentration
Potassium (ppm)	Not Regulated	n/a	4.6	4.4 – 4.8	n/a	Runoff or Leaching from Natural Deposits
Sodium (ppm)	Not Regulated	n/a	98	95 – 102	n/a	Runoff or Leaching from Natural Deposits
Total Organic Carbon (ppm)	TT	n/a	2.5	2.3 - 2.6	n/a	Various Natural and Man-made Sources

ppb = parts per billion; **ppm** = parts per million; **pCi/L** = picoCuries per liter; **µmho/cm** = micromhos per centimeter; **ND** = not detected; **n/a** = not applicable;

MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; NL = Notification Level; TT = treatment technique

*Chemical is regulated by a secondary standard.

Turbidity – combined filter effluent Metropolitan Water District Diemer Filtration Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Chemical	
1) Highest single turbidity measurement (NTU)	0.3	0.03	No	Soil Runoff	
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	No	Soil Runoff	

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT).

NTU = nephelometric turbidity units

A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

Unregulated Chemicals Requiring Monitoring at Entry Points to the Distribution System

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Germanium (ppb)	n/a	n/a	0.1	ND - 0.4	2018
Manganese (ppb) **	SMCL = 50	n/a	1.7	0.8 - 2.5	2018

SMCL = Secondary MCL

^{**}Manganese is regulated with a secondary standard of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 20 ppb.

Manganese was included as part of the unregulated chemicals requiring monitoring.

	2022 Cit	y of N	lewport	Beach Gro	oundwate	r Quality	
Chemical	MCL	PHG	Average Amount	Range of Detections	MCL Violation?	Most Recent Sampling Date	Typical Source of Contaminant
Radiologicals							
Uranium (pCi/L)	20	0.43	2.87	ND - 5.54	No	2019	Erosion of Natural Deposits
Inorganic Chemicals							
Arsenic (ppb)	10	0.004	2.1	ND - 3.5	No	2022	Erosion of Natural Deposits
Fluoride (ppm)	2	1	0.42	0.38 - 0.47	No	2022	Erosion of Natural Deposits
Nitrate (ppm as N)	10	10	1.56	ND - 3.38	No	2022	Fertilizers, Septic Tanks
Nitrate+Nitrite (ppm as N)	10	10	1.56	ND - 3.38	No	2022	Fertilizers, Septic Tanks
Secondary Standards*							
Chloride (ppm)	500*	n/a	38.6	9.7 – 66.3	No	2022	Erosion of Natural Deposits
Specific Conductance (µmho/cm)	1,600*	n/a	531	211 - 840	No	2022	Erosion of Natural Deposits
Sulfate (ppm)	500*	n/a	72	14 – 139	No	2022	Erosion of Natural Deposits
Total Dissolved Solids (ppm)	1000*	n/a	327	132 – 530	No	2022	Erosion of Natural Deposits
Unregulated Chemicals							
Alkalinity, total (ppm as CaCO ₃)	Not Regulated	n/a	141	68.5 - 212	n/a	2022	Erosion of Natural Deposits
Bicarbonate (ppm as HCO ₃)	Not Regulated	n/a	172	83.5 - 258	n/a	2022	Erosion of Natural Deposits
Boron (ppm)	NL = 1	n/a	0.16	0.13 - 0.18	n/a	2022	Erosion of Natural Deposits
Calcium (ppm)	Not Regulated	n/a	63.4	13.4 – 128	n/a	2022	Erosion of Natural Deposits
Hardness, total (ppm as CaCO ₃)	Not Regulated	n/a	198	47.9 – 348	n/a	2022	Erosion of Natural Deposits
Hardness, total (grains/gallon)	Not Regulated	n/a	12	2.8 - 20	n/a	2022	Erosion of Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	10.2	1.8 - 19.1	n/a	2022	Erosion of Natural Deposits
Perfluoro hexane sulfonic acid (ppt)	** NL = 3	n/a	<4	ND - 5.9	n/a	2022	Industrial Discharge
Perfluoro octane sulfonic acid (ppt)	** NL = 6.5	n/a	<4	ND - 4.3	n/a	2022	Industrial Discharge
pH (units)	Not Regulated	n/a	8	7.8 - 8.2	n/a	2022	Acidity, Hydrogen Ions
Potassium (ppm)	Not Regulated	n/a	3	1.7 – 4.5	n/a	2022	Erosion of Natural Deposits
Sodium (ppm)	Not Regulated	n/a	41.1	28.7 - 49.4	n/a	2022	Erosion of Natural Deposits
Vanadium (ppb)	NL = 50	n/a	4.3	3 – 6.9	n/a	2022	Erosion of Natural Deposits

ppb = parts-per-billion; **ppm** = parts-per-million; **ppt** = parts-per-trillion; **pCi/L** = picoCuries per liter; **NTU** = nephelometric turbidity units;

ND = not detected; n/a = not applicable; < = average is less than the detection limit for reporting purposes; MCL = Maximum Contaminant Level;

PHG = California Public Health Goal; **NL** = Notification Level; μ**mho/cm** = micromho per centimeter

Through blending and as a result, the City of Newport Beach Reservoir has non-detection of these two chemicals, which serves the residents of Newport Beach

Unregulated Chemicals Requiring Monitoring at Entry Points to the Distribution System

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Bromide (ppm)***	n/a	n/a	0.12	0.022 - 0.264	2019
Manganese (ppb)****	SMCL = 50	n/a	0.8	ND - 1.6	2019
Total Organic Carbon (Unfiltered) (ppm)***	n/a	n/a	0.18	0.1 - 0.27	2019

SMCL = Secondary MCL

2022 City of Newport Beach Distribution System Water Quality

Disinfection Byproducts	MCL (MRDL/MRDLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Contaminant
Total Trihalomethanes (ppb)	80	34	11 – 52	No	Byproducts of chlorine disinfection
Haloacetic Acids (ppb)	60	8	ND - 14	No	Byproducts of chlorine disinfection
Chlorine Residual (ppm)	(4 / 4)	1.8	0.1 – 2.7	No	Disinfectant added for treatment
Aesthetic Quality					
Color (Color Units)	15*	1	1	No	Erosion of natural deposits
Odor (Threshold Odor Number)	3*	1	1	No	Erosion of natural deposits
Turbidity (NTU)	5*	0.1	ND - 0.7	No	Erosion of natural deposits

Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; thirty locations are tested monthly for color, odor, and turbidity.

^{*}Contaminant is regulated by a secondary standard

	Lead and Copper Action Levels at Residential Taps									
	Action Level (AL)	Public Health Goal	90 th Percentile Value	Sites Exceeding AL / Number of Sites	AL Violation?	Typical Source of Contaminant				
Copper (ppm)	1.3	0.3	0.053	0 / 30	No	Corrosion of household plumbing				
Lead (ppb)	15	0.2	ND	0 / 30	No	Corrosion of household plumbing				

Every three years, 30 residences are tested for lead and copper at-the-tap. The most recent set of samples was collected in 2021.

Lead was not detected in any home. Copper was detected in 10 homes; none exceeded the action level.

A regulatory action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow

Unregulated Chemicals Requiring Monitoring in the Distribution System

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Bromochloroacetic Acid (ppb)	n/a	n/a	0.82	ND - 1.8	2019
Bromodichloroacetic Acid (ppb)	n/a	n/a	0.82	ND - 2.4	2019
Chlorodibromoacetic Acid (ppb)	n/a	n/a	0.5	ND - 0.9	2019
Dibromoacetic Acid (ppb)	n/a	n/a	0.93	0.4 - 1.5	2019
Dichloroacetic Acid (ppb)	n/a	MCLG = 0	0.81	ND - 1.7	2019
Trichloroacetic Acid (ppb)	n/a	MCLG = 20	0.58	ND - 1.3	2019

About Lead in Tap Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at: www.epa.gov/safewater/lead.

Source Water Assessments

Imported (MWDSC) Water Assessment

Every five years, MWDSC is required by CalDDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters.

The most recent surveys for MWDSC's source waters are the Colorado River Watershed Sanitary Survey – 2020 Update, and the State Water Project Watershed Sanitary Survey – 2021 Update.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (800) CALL-MWD (225-5693).

Groundwater Assessment

An assessment of the drinking water sources for the City was completed in December 2002. The ground water sources are considered most vulnerable to the following activities not associated with detected contaminants: dry cleaners, gas stations, and known contaminant plumes.

A copy of the complete assessment is available at State Water Resource Control Board, Division of Drinking Water, Santa Ana District, 2 MacArthur Place, Suite 150, Santa Ana, California 92707. You may request a summary of the assessment by contacting the City at (949) 644-3011.

^{*}Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color).

^{**}Detections of perfluoro hexane sulfonic acid (PFHxS) and perfluoro octane sulfonic acid (PFOS) are in the shallow wells.

^{***}Source Water Location Sample

^{****}Manganese is regulated with a secondary standard of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 20 ppb.

Manganese was included as part of the unregulated chemicals requiring monitoring.

 $[\]textbf{MRDL} = \text{Maximum Residual Disinfectant Level; } \textbf{MRDLG} = \text{Maximum Residual Disinfectant Level Goal MRDLG}$

We Appreciate All You Do to Save Water

Thank you! For all we've been through during these many years of intermittent drought, the City of Newport Beach extends its heartfelt thanks to all of you who have worked so hard to conserve water.

Winter rains and a near record-setting Sierra snowpack were welcome relief to the state's multi-year drought. While our City is fortunate enough to have an ample groundwater source, which we rely on for our water supply, we do need the recent rain to recharge our groundwater supply and reservoirs for our current and future needs.

We still must practice water-wise habits as a way of life.

We invite you to "Ride the Wave to Water Savings," continuing to conserve water and reduce water waste in our beautiful city. It's the Newport Beach way of life, after all. Check out watersmartnewport.org for tips, tools and rebates to help you save.

This report contains important information about your drinking water.

Translate it, or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

City of Newport Beach Utilities Department

100 Civic Center Drive Newport Beach, California 92660 PRESORT STD
U.S. Postage
PAID
Santa Ana, CA

Permit No. 1208

ECRWSS

POSTAL CUSTOMER

