Appendices

Appendix G1 Hydrology Report

Appendices

This page intentionally left blank.

HYDROLOGY REPORT

Newport Crossings

Newport Beach, California

Prepared For

Starboard Realty Partners, LLC 1301 Dove Street, Suite 1080 Irvine, CA 92612 949.851.2020

Prepared By
Fuscoe Engineering, Inc.
6390 Greenwich Drive Suite 170
San Diego, California 92122
858.554.1500
www.fuscoe.com

Project Manager: Bryan Smith, P.E.

Date Prepared: August 2017 Revised August 2018

Job Number: 1618.001

DRAINAGE STUDY

NEWPORT CROSSINGS

Newport Beach, California

Prepared By Jesus Garcia Under the Responsible Charge of:

Bryan D. Smith, P.E.

RCE 75822

EXP: 06-30-20

Fuscoe Engineering, San Diego, Inc. 6390 Greenwich Dr., Ste 170 San Diego, CA 92122 For

Starboard Realty Partners, LLC 1301 Dove Street, Suite 1080 Newport Beach, CA 92660

> August 2017 Revised August 2018

TABLE OF CONTENTS

TABLE	of contents		1								
1.0	INTRODUCTION	DN	1								
1.1	GEOGRAPHI	IC SETTING	1								
1.2	PROJECT DE	PROJECT DESCRIPTION									
1.3	PURPOSE OF	PURPOSE OF THIS REPORT									
1.4	references		2								
2.0	EXISTING DRA	NINAGE	2								
2.1	existing to	POGRAPHY	2								
2.2	existing dr	AINAGE PATTERN	2								
2.3	EXISTING STORM DRAIN FACILITIES										
3.0	PROPOSED STORM DRAIN CONNECTION										
4.0	HYDROLOGY		3								
4.1	STORM FREC	QUENCY	3								
4.2	METHODOL	OGY	3								
5.0 RES	Sults and co	NCLUSIONS	4								
6.0 API	PENDICES		5								
	Appendix 1	A.E.S. Rational Method HydrologyCalculations									
	Appendix 2	A.E.S. Unit Hydrograph Calculations and Low Loss Fraction Estimations									
	Appendix 3	Existing and Proposed ConditionHydrology Maps									
	Appendix 4	Record Street Improvement Plans									

1.0 INTRODUCTION

1.1 GEOGRAPHIC SETTING

The Newport Crossings project site encompasses a total area of approximately 5.69 acres in the city of Newport Beach. The project site is bounded by Dove St to the south, Scott Dr. to the west, Corinthian Way to the north, and Martingale Way to the west.

Under existing conditions, the project site is primarily built out with several low rise commercial buildings and small businesses as well as surface parking. Landscaping areas with trees surround the site. Adjacent land uses include other commercial businesses such as Staples, a Radisson Hotel, Jamba Juice, and a car wash.

A Location Map is shown below.

1.2 PROJECT DESCRIPTION

The proposed project includes the development of a 350 unit residential project consisting of four (4) 5 story Type III-A residential buildings surrounding a 5-story (6 level) Type I-A parking structure with amenity deck and 7,500 sf of retail space. Recreation centers, such as pools, fitness spa facility, and other amenities, along with common-area landscaping are included in the proposed development.

1.3 PURPOSE OF THIS REPORT

The purpose of this report is to provide hydrologic calculations and maps for existing and proposed conditions for the proposed project entitlements.

1.4 REFERENCES

- Orange County Hydrology Manual
- A.E.S. hydrologic software

2.0 EXISTING DRAINAGE

2.1 EXISTING TOPOGRAPHY

The topography of the site varies, with slopes ranging from about 1-percent to approximately 4-percent. The ground surface elevation at the site varies from about 175 feet to 180 feet above mean sea level.

2.2 EXISTING DRAINAGE PATTERN

The roof drainage from the existing building is directed to the existing on-site area surrounding the building. The roof and surface drainage is conveyed along the property, and exits the property at the southeast driveway at Westerly Place before entering the underground public storm drain system at the existing curb inlet.

The site's existing high point is onsite at the northeast corner at the intersection of Corinthian Way and Martingale Way. Drainage is then conveyed by two routes via concrete valley gutters along the center of the parking drive aisles. One route travels the perimeter along the west and the second route travels southerly along the perimeter along the east. Drainage then converges and leaves the site at the southeast driveway on Dove Street at the Westerly Place intersection.

2.3 EXISTING STORM DRAIN FACILITIES

There are no existing underground storm drain facilities within the site; existing on-site drainage is conveyed as surface-flow, as discussed in the previous section.

From the driveway on Dove Street, the drainage is conveyed to the public right of way within the curb and gutter and enters the underground drainage system through a curb inlet at Westerly Place. The curb inlet conveys drainage through an 18" RCP lateral and into the 54" RCP pipe main sloping south along Dove Street. Existing street improvements plans are available on Appendix 4. Storm water runoff

generally flows southeast connecting into the San Diego Creek Channel, before ultimately discharging into Upper Newport Bay.

3.0 PROPOSED STORM DRAIN CONNECTION

The proposed project will consist of two separate 18" RCP lateral connections: One lateral serves the condominiums portion of the project and ties-into the 48" RCP main on Dove Street north of Westerly Place. The second lateral serves the proposed park and will connect to the existing lateral serving the curb inlet on Dove Street. Both connections are the collect storm water runoff and convey it underground along the perimeter of the site and drain to the discharge location at the southwest intersection corner of the property, and outlet into an existing curb and gutter in the existing driveway. Two proposed private drain systems; one for the condominiums and one for the park, will convey the stormwater to the discharge location.

4.0 HYDROLOGY

4.1 STORM FREQUENCY

The 25-year storm event was used for the proposed design. The 2-year storm event was used to supplement BMP design in the WQMP for this projects.

4.2 METHODOLOGY

This study was prepared in conformance with the Orange County Hydrology Manual. A.E.S. Computer Software was utilized to compile the hydrologic data and to determine the peak discharges. The Rational Method Hydrology Calculations are included in Appendix 1. The Hydrograph Calculations are included in Appendix 2. The y-bar and hydrograph calculations are included in Appendix 3. The Existing and Proposed Condition Hydrology Maps are included in Appendix 4.

5.0 RESULTS AND CONCLUSIONS

The results of the proposed condition design hydrology analyses are shown in the following tables.

ONSITE PEAK DISCHARGE SUMMARY

	Q ₂₅	Тс	Area
Existing (node 104)	15.09 cfs	10.68 minutes	5.69 ac
Proposed (node 300)	15.35 cfs	11.81 minutes	5.69 ac

TOTAL PEAK DISCHARGE SUMMARY

	Q ₂₅	Тс	Area
Existing (node 100)	23.73 cfs	12.32 minutes	9.41 ac
Proposed (node 100)	23.53 cfs	11.88 minutes	9.41 ac

The onsite comparison of the Q25 storm runoff for the developed condition is 0.26 cfs more from existing condition. However, for the total peak discharge (confluence with street runoff) entering the public storm drain system the peak flowrate for the developed conditions is 0.2 cfs less than existing.

In existing conditions for the Q25 storm event the onsite runoff combines with runoff from public streets before entering a curb inlet in the ROW. A public SD lateral (node 100) ties the curb inlet to the 54" RCP main at a manhole located in the intersection of Dove Street and Westerly Place. The curb inlet lateral serves as the point of analysis for the total peak discharge of the developed project.

6.0 APPENDICES

Appendix 1 A.E.S. Rational Method HydrologyCalculations

Appendix 2 A.E.S. Unit Hydrograph Calculations and Low Loss Fraction Estimations

Appendix 3 Existing and Proposed ConditionHydrology Maps

Appendix 4 Record Street Improvement Plans

Appendix 1

A.E.S. Rational Method Hydrology Calculations

6390 Greenwich Drive, Suite 170 San Diego, California 92122 tel 858.554.1500 o fax 858.597.0335 www.fuscoe.com Job Name: Newport Crossings Date: 8/28/2018

Job #: 1618-001

Run Name:

16181EX25

Description: Existing 25 year design storm

Page:

Node to Node		Code	Elev 1 (feet)	Elev 2 (feet)	Length (feet)	Runoff Coeff. (C)	Area (ac.)	Comments
107	106	2	52.9	52.6	55	D	0.10	INITIAL SUBAREA
106	105	5	52.6	48.3	980	D	2.52	OPEN FLOW ADD SUBAREA B1
105	105	1						CONFLUENCE 1 OF 2
107	108	2	52.9	52.6	55	D	0.10	INITIAL SUBAREA
108	105	5	52.6	48.3	610	D	1.74	OPEN FLOW
105	105	1						ADD SUBAREA B2 CONFLUENCE 2 OF 2
105	105	8				D	1.23	ADDITION OF SUBAREA B3
105	104	5	48.3	46.6	30			OPEN FLOW
104	104	8				D	0.66	ADDITION OF SUBAREA A1
104	104	1						CONFLUENCE 1 OF 2
103	102	2	53.6	52.8	40	D	0.10	INITIAL SUBAREA
102	102	8				D	0.84	ADDITION OF SUBAREA A3
102	101	6	52.8	46.4	1,570	D	2.11	ADDITION OF SUBAREA A2
101	101	1						IN STREET GUTTER CONFLUENCE 2 OF 2
101	100	3	39.7	39.2	50			EX 18 RCP
<u> </u>								

*********************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1355 Analysis prepared by: Fuscoe Engineering 6390 Greenwich Drive Suite 170 San Diego, CA 92122 ******************** DESCRIPTION OF STUDY **************** * NEWPORT CROSSINGS * EXISTING CONDITION * 25-YEAR STORM EVENT ******************************* FILE NAME: 16181X25.DAT TIME/DATE OF STUDY: 12:14 08/29/2018 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = SPECIFIED MINIMUM PIPE SIZE(INCH) = SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) NO. (FT) (FT) (FT) (FT) (n) 0.67 24.0 18.0 0.180/0.180/0.020 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*

Page 1

*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

```
**********************************
 FLOW PROCESS FROM NODE
                     ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 55.00
 ELEVATION DATA: UPSTREAM(FEET) = 52.90 DOWNSTREAM(FEET) = 52.60
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                                    Fp
                                             Aр
                                                 SCS Tc
     LAND USE
                    GROUP (ACRES) (INCH/HR)
                                           (DECIMAL) CN (MIN.)
                                                   75 5.00
 COMMERCIAL
                      D
                             0.10 0.20
                                            0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) =
********************************
 FLOW PROCESS FROM NODE
                     106.00 TO NODE
                                   105.00 IS CODE = 54
    -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.60 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 980.00 CHANNEL SLOPE = 0.0044
 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 40.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.20
      ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
          CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
          ALLOWABLE DEPTH).
          AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
          ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.917
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                    Fp
                                                  SCS
     LAND USE
                    GROUP
                           (ACRES) (INCH/HR)
                                           (DECIMAL) CN
 COMMERCIAL
                      D
                             2.52
                                    0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.28
 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 7.16
                             Page 2
```

```
Tc(MIN.) = 12.16
 SUBAREA AREA(ACRES) = 2.52 SUBAREA RUNOFF(CFS) = 6.57
EFFECTIVE AREA(ACRES) = 2.62 AREA-AVERAGED Fm(INCH/HR) =
                              AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                       2.6
                                PEAK FLOW RATE(CFS) =
                                                       6.83
       ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
          CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
          ALLOWABLE DEPTH).
          AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
          ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 *GIVEN HEIGHT(FEET) = 0.20 ESTIMATED CHANNEL BASE(FEET) = 11.27
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 1.77
 LONGEST FLOWPATH FROM NODE 107.00 TO NODE 105.00 = 1035.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.16
 RAINFALL INTENSITY(INCH/HR) = 2.92
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 2.62
 TOTAL STREAM AREA(ACRES) = 2.62
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.83
**********************************
 FLOW PROCESS FROM NODE
                      107.00 TO NODE
                                    108.00 \text{ IS CODE} = 21
    >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 55.00
 ELEVATION DATA: UPSTREAM(FEET) = 52.90 DOWNSTREAM(FEET) = 52.60
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA To AND LOSS RATE DATA(AMC II):
                                             Ap SCS Tc
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                              Page 3
```

16181X25.RES LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) D 0.10 0.20 0.100 75 5.00 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 0.43 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.43 ******************************** FLOW PROCESS FROM NODE ______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 52.60 DOWNSTREAM(FEET) = 48.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00 CHANNEL SLOPE = 0.0070 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 40.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.20 ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY(NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.150 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Aр LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL 1.74 0.20 0.100 75 D SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 5.62 Tc(MIN.) =10.62 SUBAREA AREA(ACRES) = 1.74 SUBAREA RUNOFF(CFS) = 4.90 EFFECTIVE AREA(ACRES) = 1.84 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 5.18 ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY(NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH).

AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.

*GIVEN HEIGHT(FEET) = 0.20 ESTIMATED CHANNEL BASE(FEET) = 4.63

```
16181X25.RES
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.20
                 FLOW VELOCITY(FEET/SEC.) = 2.05
                         107.00 TO NODE 105.00 =
 LONGEST FLOWPATH FROM NODE
                                                  665.00 FEET.
**********************************
                                    105.00 IS CODE = 1
 FLOW PROCESS FROM NODE
                      105.00 TO NODE
    ......
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.62
 RAINFALL INTENSITY(INCH/HR) = 3.15
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 1.84
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 5.18
 ** CONFLUENCE DATA **
                      Intensity Fp(Fm)
                                             Ae
  STREAM
           Q
                  Tc
                                        Aр
                                                   HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
  NUMBER
                                                     NODE
           6.83
                12.16
                        2.917 0.20(0.02)0.10
                                              2.6
                                                       107.00
    1
                        3.150 0.20(0.02)0.10
    2
           5.18
                 10.62
                                                1.8
                                                       107.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
           Q
                      Intensity Fp(Fm)
                                        Ap
                                             Ae
                                                    HEADWATER
                  Tc
  NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
                                                     NODE
           11.63 10.62
                        3.150 0.20(0.02)0.10
                                              4.1
                                                       107.00
    1
                        2.917 0.20( 0.02) 0.10
    2
           11.63 12.16
                                                4.5
                                                       107.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                       11.63
                              Tc(MIN.) =
                                         12.16
 EFFECTIVE AREA(ACRES) =
                      4.46 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 4.5
 LONGEST FLOWPATH FROM NODE 107.00 TO NODE
                                        105.00 =
                                                 1035.00 FEET.
****************************
                      105.00 TO NODE
 FLOW PROCESS FROM NODE
                                    105.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
```

```
MAINLINE Tc(MIN.) = 12.16
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.917
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                         Fp
                                                 Аp
                                                        SCS
      LAND USE
                       GROUP
                              (ACRES)
                                      (INCH/HR)
                                                (DECIMAL) CN
                                 1.23
                                                  0.100
                                                         75
 COMMERCIAL
                         D
                                      0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.23 SUBAREA RUNOFF(CFS) = 3.21 EFFECTIVE AREA(ACRES) = 5.69 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 5.7
                               PEAK FLOW RATE(CFS) =
 ** PEAK FLOW RATE TABLE **
  STREAM
            Q Tc Intensity Fp(Fm)
                                           Αp
                                                 Ae
                                                        HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                 (ACRES)
                                                          NODE
                          3.150 0.20(0.02) 0.10 5.4
     1
            15.09 10.62
                                                            107.00
                          2.917 0.20( 0.02) 0.10
                                                   5.7
     2
            14.83 12.16
                                                            107.00
 NEW PEAK FLOW DATA ARE:
 PEAK FLOW RATE(CFS) = 15.09 Tc(MIN.) = 10.62
 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10 EFFECTIVE AREA(ACRES) = 5.36
*********************************
 FLOW PROCESS FROM NODE
                        105.00 TO NODE 104.00 IS CODE = 54
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 48.30 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 30.00 CHANNEL SLOPE = 0.0567
 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 40.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.20
       ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
           CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
           ALLOWABLE DEPTH).
           AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
           ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 *GIVEN HEIGHT(FEET) = 0.20 ESTIMATED CHANNEL BASE(FEET) =
 CHANNEL FLOW THRU SUBAREA(CFS) = 15.09
 FLOW VELOCITY(FEET/SEC.) = 5.86 FLOW DEPTH(FEET) = 0.20
 TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 10.68
 LONGEST FLOWPATH FROM NODE 107.00 TO NODE 104.00 = 1065.00 FEET.
 *******************************
 FLOW PROCESS FROM NODE 104.00 TO NODE
                                        104.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 10.68
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.140
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                 SCS SOIL
                           AREA
                                   Fp
                                           Αp
                                                SCS
                    GROUP
     LAND USE
                          (ACRES)
                                 (INCH/HR) (DECIMAL) CN
                                                 75
 COMMERCIAL
                     D
                            0.66
                                    0.20
                                          0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 1.85
 EFFECTIVE AREA(ACRES) = 6.02 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                          PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 6.3
****************************
 FLOW PROCESS FROM NODE
                    104.00 TO NODE
                                  104.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.68
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 6.02
 TOTAL STREAM AREA(ACRES) = 6.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                16.90
*******************************
 FLOW PROCESS FROM NODE 103.00 TO NODE
                                  102.00 \text{ IS CODE} = 21
    >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 40.00
 ELEVATION DATA: UPSTREAM(FEET) = 53.60 DOWNSTREAM(FEET) = 52.80
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                   Fp
                                           Ap
                                               SCS Tc
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                     D
                                  0.20
                                         0.100
                            0.10
                                                 75 5.00
                            Page 7
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.43
******************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 5.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                              Aр
                                                    SCS
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                      D
                             0.84 0.20
                                             0.100
                                                     75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.84 SUBAREA RUNOFF(CFS) = 3.63
 EFFECTIVE AREA(ACRES) = 0.94 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) =
                                                    4.06
********************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 101.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 52.80 DOWNSTREAM ELEVATION(FEET) = 46.40
 STREET LENGTH(FEET) = 1570.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 24.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 18.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.180
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.180
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.72
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.11
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
```

```
STREET FLOW TRAVEL TIME(MIN.) =
                               8.42 \text{ Tc}(MIN.) = 13.42
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.758
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fp
                                                   Aр
                                                         SCS
      LAND USE
                       GROUP
                               (ACRES) (INCH/HR)
                                                (DECIMAL) CN
 COMMERCIAL
                         D
                                 2.11
                                       0.20
                                                  0.100
                                                          75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 2.11 SUBAREA RUNOFF(CFS) = 5.20 
EFFECTIVE AREA(ACRES) = 3.05 AREA-AVERAGED Fm(INCH/HR) =
                                AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 3.0
                                PEAK FLOW RATE(CFS) = 7.52
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 9.79
 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 2.33
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE
                                            101.00 = 1610.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                        >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.42
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 3.05
 TOTAL STREAM AREA(ACRÈS) = ´
                              3.05
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                      7.52
 ** CONFLUENCE DATA **
  STREAM
             Q
                    Tc
                        Intensity Fp(Fm)
                                            Aр
                                                  Ae
                                                         HEADWATER
  NUMBER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                 (ACRES)
                                                           NODE
                                                 6.0
            16.90 10.68
                           3.140 0.20(0.02)0.10
                                                             107.00
     1
                           2.908 0.20(0.02)0.10
     1
            16.51 12.22
                                                     6.3
                                                             107.00
            7.52 13.42 2.758 0.20(0.02)0.10
                                                     3.0
                                                             103.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
             Q
                    Tc
                        Intensity Fp(Fm)
                                             Ар
                                                   Ae
                                                         HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                 (ACRES)
  NUMBER
                                                           NODE
```

```
16181X25.RES
          23.71 10.68 3.140 0.20(0.02)0.10 8.4
    1
                                                   107.00
          23.73 12.22 2.908 0.20(0.02) 0.10 9.1
23.17 13.42 2.758 0.20(0.02) 0.10 9.4
    2
                                                    107.00
    3
                                                    103.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 23.73 Tc(MIN.) = 12.22
 EFFECTIVE AREA(ACRES) = 9.13 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 9.4
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE
                                     101.00 = 1610.00 FEET.
******************************
                    101.00 TO NODE
 FLOW PROCESS FROM NODE
                                  100.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 39.70 DOWNSTREAM(FEET) = 39.20
 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.22
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  23.73
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 12.32
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE 100.00 = 1660.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 9.4 TC(MIN.) = 12.32
EFFECTIVE AREA(ACRES) = 9.13 AREA-AVERAGED Fm(INCH/HR)= 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.100
 PEAK FLOW RATE(CFS) =
                     23.73
 ** PEAK FLOW RATE TABLE **
         Q Tc Intensity Fp(Fm) Ap
  STREAM
                                          Ae
                                               HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                          (ACRES)
                                                  NODE
          23.71 10.78 3.123 0.20(0.02) 0.10 8.4
    1
                                                    107.00
          23.73 12.32
                       2.895 0.20(0.02)0.10
                                             9.1
    2
                                                    107.00
          23.17 13.52
                       2.747 0.20( 0.02) 0.10
                                            9.4
______
______
```

END OF RATIONAL METHOD ANALYSIS

6390 Greenwich Drive, Suite 170 San Diego, California 92122 tel 858.554.1500 o fax 858.597.0335 www.fuscoe.com Job Name: Newport Crossings Date: 8/28/2018

Job #: 1618-001

Run Name: 16181PR25

Description: Proposed 25 year design storm

Page: 1

Node to Node		Code	Elev 1	Elev 2	Length	Runoff	Area	Comments
00/	1 005		(feet)	(feet)	(feet)	Coeff. (C)	(ac.)	IN UITHAL CLUBAREA
306	305	2	124.2	123.5	65.0	D	0.10	initial Subarea
305	304	5	52.0	50.8	60.0			SURFACE FLOW
			02.0					331111132112311
304	304	8				D	0.59	ADDITION OF SUBAREA C1
304	303	3	46.8	45.0	445.0			PIPE FLOW
303	303	8				D	0.49	ADDITION OF SUBAREA C2
202	200	2	45.0	4.4.1	005.0			DIDE EL OVA
303	302	3	45.0	44.1	225.0			PIPE FLOW
302	302	8				D	1.50	ADDITION OF SUBAREA C3
302	302	0					1.50	ADDITION OF SUBARLA CS
302	301	3	44.1	43.0	250.0			PIPE FLOW
301	301	1						CONFLUENCE 1 OF 2
306	305	2	124.2	122.9	65.0	D	0.10	initial subarea
305	309	5	52.0	51.1	75.0			SURFACE FLOW
200	200	0				_	0.00	ADDITION OF CURAREA CA
309	309	8				D	0.22	ADDITION OF SUBAREA C4
309	308	3	47.1	45.8	255.0			PIPE FLOW
307	300		77.1	45.0	233.0			111 L 1 L 0 VV
308	308	8				D	0.51	ADDITION OF SUBAREA C5
308	307	3	45.8	44.1	335.0			PIPE FLOW
307	307	8				D	1.57	addition of Subarea C6
207	001		44.7	40.0	015.0			DIDE EL OVA
307	301	3	44.1	43.0	215.0			PIPE FLOW
301	301	1						CONFLUENCE 2 OF 2
301	301	1						CONTROLINCE 2 OF 2
301	300	3	39.8	39.7	35.0			PIPE FLOW
		_						
P.	-	•	•			•		-

6390 Greenwich Drive, Suite 170 San Diego, California 92122 tel 858.554.1500 • fax 858.597.0335 www.fuscoe.com Job Name: Newport Crossings Date: 8/28/2018

Job #: 1618-001

Run Name: 16181PR25

Description: Proposed 25 year design storm

Page: 2

Node to Node		Code	Elev 1 (feet)	Elev 2 (feet)	Length (feet)	Friction Coeff.	Area (ac.)	Comments
300	300	1	(IEEI)	(leel)	(leel)	Coen.	(uc.)	CONFLUENCE 1 OF 2
203	202	2	52.9	50.6	145.0	D	0.10	initial subarea
202	202	8				D	0.16	ADDITION OF SUBAREA B1
202	201	3	44.0	41.8	220.0			PIPE FLOW
201	201	8				D	0.35	Addition of Subarea B2
201	300	3	41.8	39.7	40.0			PIPE FLOW
300	300	1						CONFLUENCE 2 OF 2
101	101	8				D	0.66	Addition of Subarea A1
101	101	1						CONFLUENCE 1 OF 2
103	102	2	53.6	52.8	40.0	D	0.10	initial subarea
102	102	8				D	0.84	Addition of Subarea A3
102	101	6	52.8	46.4	1,570.0	D	2.11	HALF STREET FLOW
101	101	1						CONFLUENCE 2 OF 2
101	100	3	39.7	38.0	50.0			PIPE FLOW

*********************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1355 Analysis prepared by: Fuscoe Engineering 6390 Greenwich Drive Suite 170 San Diego, CA 92122 ******************** DESCRIPTION OF STUDY **************** * NEWPORT CROSSINGS * PROPOSED CONDITION * 25-YEAR STORM EVENT ******************************* FILE NAME: 16181P25.DAT TIME/DATE OF STUDY: 16:48 08/28/2018 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) NO. (FT) (FT) (FT) (FT) (n) === ==== 24.0 18.0 0.180/0.180/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

```
**********************************
                     306.00 TO NODE
 FLOW PROCESS FROM NODE
                                  305.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 ELEVATION DATA: UPSTREAM(FEET) = 124.20 DOWNSTREAM(FEET) = 123.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                            AREA
                                    Fp
                                            Ap
                                                  SCS Tc
                    GROUP
                           (ACRES) (INCH/HR)
     LAND USE
                                          (DECIMAL) CN (MIN.)
                                   0.20
 CONDOMINIUMS
                      D
                             0.10
                                            0.350
                                                   75
                                                       5.00
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) =
                    0.10 PEAK FLOW RATE(CFS) =
*********************************
                     305.00 TO NODE
 FLOW PROCESS FROM NODE
                                   304.00 \text{ IS CODE} = 54
    >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                              52.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE = 0.0200
 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) =
                               0.43
 FLOW VELOCITY(FEET/SEC.) = 0.40 FLOW DEPTH(FEET) =
 TRAVEL TIME(MIN.) = 2.48 Tc(MIN.) = 7.48
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                      304.00 = 125.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                     304.00 TO NODE
                                   304.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) =
                   7.48
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.841
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                            AREA
                                                  SCS
                                    Fp
                    GROUP
                                  (INCH/HR)
                                          (DECIMAL) CN
     LAND USE
                           (ACRES)
 CONDOMINIUMS
                      D
                             0.59
                                     0.20
                                            0.350
                                                   75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                             Page 2
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 0.69 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.7
                          PEAK FLOW RATE(CFS) =
****************************
 FLOW PROCESS FROM NODE 304.00 TO NODE 303.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 46.80 DOWNSTREAM(FEET) = 45.00
 FLOW LENGTH(FEET) = 445.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.32
 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.34
 PIPE TRAVEL TIME(MIN.) = 2.24 Tc(MIN.) =
                                   9.71
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                    303.00 =
                                             570.00 FEET.
******************************
 FLOW PROCESS FROM NODE
                    303.00 TO NODE
                                 303.00 \text{ IS CODE} = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 9.71
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.313
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fp
                                              SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
             D 0.49
 CONDOMINIUMS
                                         0.350
                                               75
                                 0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.49 SUBAREA RUNOFF(CFS) = 1.43
 EFFECTIVE AREA(ACRES) = 1.18 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 1.2 PEAK FLOW RATE(CFS) =
******************************
 FLOW PROCESS FROM NODE 303.00 TO NODE 302.00 IS CODE = 31
   -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 45.00 DOWNSTREAM(FEET) = 44.10
 FLOW LENGTH(FEET) = 225.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.0 INCHES
```

```
16181P25.RES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.57
 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              3.44
 PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) =
                                    10.76
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                    302.00 = 795.00 FEET.
****************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81
   >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 10.76
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.126
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 CONDOMINIUMS
                    D
                           1.50 0.20
                                          0.350
                                                75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 4.12
 EFFECTIVE AREA(ACRES) = 2.68 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) =
********************************
 FLOW PROCESS FROM NODE
                    302.00 TO NODE
                                 301.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 44.10 DOWNSTREAM(FEET) = 43.00
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.53
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.37
 PIPE TRAVEL TIME(MIN.) = 0.92 Tc(MIN.) =
                                    11.68
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                    301.00 = 1045.00 FEET.
******************************
                    301.00 TO NODE
 FLOW PROCESS FROM NODE
                                301.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.68
 RAINFALL INTENSITY(INCH/HR) =
```

```
16181P25.RES
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 2.68
 TOTAL STREAM AREA(ACRES) = 2.68
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 7.37
********************************
 FLOW PROCESS FROM NODE
                    306.00 TO NODE
                                   305.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 ELEVATION DATA: UPSTREAM(FEET) = 124.20 DOWNSTREAM(FEET) = 122.90
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                    Fp
                                            Ap SCS Tc
                    GROUP
                           (ACRES)
                                  (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                                                  75
 CONDOMINIUMS
                      D
                             0.10
                                            0.350
                                                       5.00
                                    0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) =
                    0.10 PEAK FLOW RATE(CFS) =
*********************************
 FLOW PROCESS FROM NODE
                     305.00 TO NODE 309.00 IS CODE = 54
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE = 0.0120
 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 0.43
 FLOW VELOCITY(FEET/SEC.) = 0.40 FLOW DEPTH(FEET) = 0.01
 TRAVEL TIME(MIN.) = 3.10 Tc(MIN.) = 8.10
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                      309.00 =
                                                140.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
```

Page 5

```
MAINLINE Tc(MIN.) = 8.10
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.672
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL AREA
  DEVELOPMENT TYPE/
                                       Fp
                                                Aр
                                                      SCS
     LAND USE
                      GROUP
                             (ACRES)
                                     (INCH/HR)
                                              (DECIMAL)
                                                       CN
 CONDOMINIUMS
                        D
                               0.22
                                        0.20
                                               0.350
                                                       75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.71 EFFECTIVE AREA(ACRES) = 0.32 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.3
                                PEAK FLOW RATE(CFS) =
**********************************
                       309.00 TO NODE
                                      308.00 \text{ IS CODE} = 31
 FLOW PROCESS FROM NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                               47.10 DOWNSTREAM(FEET) = 45.80
 FLOW LENGTH(FEET) = 255.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.87
                                    NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 9.00
 PIPE-FLOW(CFS) =
                    1.04
 PIPE TRAVEL TIME(MIN.) = 1.48
                             Tc(MIN.) =
                                         9.58
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                         308.00 =
                                                    395.00 FEET.
***********************************
 FLOW PROCESS FROM NODE
                       308.00 TO NODE
                                      308.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) =
                    9.58
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.339
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                             AREA
                                       Fp
                                                Aр
                                                      SCS
     LAND USE
                      GROUP
                             (ACRES)
                                     (INCH/HR)
                                              (DECIMAL) CN
 CONDOMINIUMS
                               0.51
                                                       75
                        D
                                        0.20
                                               0.350
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) =
                      0.51 SUBAREA RUNOFF(CFS) = 1.50
 EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.8
                               PEAK FLOW RATE(CFS) =
                                                        2.44
 ********************************
 FLOW PROCESS FROM NODE
                       308.00 TO NODE
                                      307.00 \text{ IS CODE} = 31
                               Page 6
```

. ugc o

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 45.80 DOWNSTREAM(FEET) = 44.10
 FLOW LENGTH(FEET) = 335.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.65
 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   2.44
 PIPE TRAVEL TIME(MIN.) = 1.53 Tc(MIN.) =
                                      11.10
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                      307.00 =
                                               730.00 FEET.
*********************************
                     307.00 TO NODE
                                  307.00 \text{ IS CODE} = 81
 FLOW PROCESS FROM NODE
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 11.10
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.071
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                    Fp
                                                  SCS
                    GROUP (ACRES)
     LAND USE
                                  (INCH/HR)
                                          (DECIMAL) CN
 CONDOMINIUMS
                      D
                             1.57
                                     0.20
                                            0.350
                                                   75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 1.57 SUBAREA RUNOFF(CFS) = 4.24 
EFFECTIVE AREA(ACRES) = 2.40 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 2.4
                            PEAK FLOW RATE(CFS) =
                                                    6.48
****************************
 FLOW PROCESS FROM NODE
                     307.00 TO NODE
                                   301.00 \text{ IS CODE} = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                             44.10 DOWNSTREAM(FEET) = 43.00
 FLOW LENGTH(FEET) = 215.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.57
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.48
 PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) =
                                      11.89
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                      301.00 = 945.00 FEET.
 ***************************
 FLOW PROCESS FROM NODE 301.00 TO NODE
                                   301.00 \text{ IS CODE} = 1
                             Page 7
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.89
 RAINFALL INTENSITY(INCH/HR) = 2.95
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 2.40
 TOTAL STREAM AREA(ACRES) = 2.40
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.48
 ** CONFLUENCE DATA **
                 Tc Intensity Fp(Fm)
  STREAM
          Q
                                         Ap
                                              Ae
                                                   HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
  NUMBER
                                                      NODE
           7.37 11.68 2.984 0.20( 0.07) 0.35 2.7
    1
                                                        306.00
                                                        306.00
            6.48 11.89 2.954 0.20( 0.07) 0.35
                                                2.4
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
           Q Tc Intensity Fp(Fm) Ap
                                              Ae HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
  NUMBER
                                                      NODE
                        2.984 0.20( 0.07) 0.35 5.0
           13.80 11.68
                                                        306.00
                         2.954 0.20(0.07)0.35
                                                5.1
           13.78 11.89
                                                        306.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 13.80 Tc(MIN.) = 11.68 EFFECTIVE AREA(ACRES) = 5.04 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 5.1
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                        301.00 = 1045.00 FEET.
**********************************
                      301.00 TO NODE
 FLOW PROCESS FROM NODE
                                     300.00 \text{ IS CODE} = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                              39.80 DOWNSTREAM(FEET) = 39.70
 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.45
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) =
                 13.80
 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) =
                                    11.81
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                    300.00 =
                                           1080.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
   ______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.81
 RAINFALL INTENSITY(INCH/HR) = 2.97
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 5.04
 TOTAL STREAM AREA(ACRES) = 5.08
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              13.80
*******************************
 FLOW PROCESS FROM NODE 203.00 TO NODE
                                 202.00 \text{ IS CODE} = 21
    >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 145.00
 ELEVATION DATA: UPSTREAM(FEET) = 52.90 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.099
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671
 SUBAREA To AND LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
  DEVELOPMENT TYPE/
                                             SCS Tc
                                 Fp
                                         Ар
                         (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                   GROUP
 PUBLIC PARK
                    D
                           0.10
                                 0.20
                                         0.850
                                               75 8.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 0.32
 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.32
********************************
 FLOW PROCESS FROM NODE
                   202.00 TO NODE
                                 202.00 \text{ IS CODE} = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) =
                  8.10
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671
```

```
SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                           AREA
                                   Fp
                                                 SCS
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                    D
                            0.16
                                   0.20
                                           0.850
                                                 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
                           SUBAREA RUNOFF(CFS) = 0.50
 SUBAREA AREA(ACRES) = 0.16
 EFFECTIVE AREA(ACRES) = 0.26 AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 0.3
                            PEAK FLOW RATE(CFS) =
******************************
 FLOW PROCESS FROM NODE
                     202.00 TO NODE
                                  201.00 IS CODE = 31
    -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 44.00 DOWNSTREAM(FEET) = 41.80
 FLOW LENGTH(FEET) = 220.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.59
 ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 1.02 Tc(MIN.) =
                                      9.12
 LONGEST FLOWPATH FROM NODE 203.00 TO NODE
                                     201.00 =
                                               365.00 FEET.
********************************
 FLOW PROCESS FROM NODE
                     201.00 TO NODE
                                  201.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 9.12
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.433
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL
  DEVELOPMENT TYPE/
                           AREA
                                   Fp
                                           Ар
                    GROUP
     LAND USE
                          (ACRES)
                                 (INCH/HR)
                                         (DECIMAL) CN
 PUBLIC PARK
                     D
                            0.35
                                    0.20
                                           0.850
                                                 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 1.03
 EFFECTIVE AREA(ACRES) = 0.61 AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS) =
                                                  1.79
******************************
                     201.00 TO NODE
 FLOW PROCESS FROM NODE
                                  300.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 41.80 DOWNSTREAM(FEET) = 39.70 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.5 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 8.12

ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 1.79

PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 9.20

LONGEST FLOWPATH FROM NODE 203.00 TO NODE 300.00 = 405.00 FEET.

FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 9.20

RAINFALL INTENSITY(INCH/HR) = 3.42

AREA-AVERAGED Fm(INCH/HR) = 0.17

AREA-AVERAGED Fp(INCH/HR) = 0.20

AREA-AVERAGED Ap = 0.85

EFFECTIVE STREAM AREA(ACRES) = 0.61

TOTAL STREAM AREA(ACRES) = 0.61

PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.79

** CONFLUENCE DATA **

STREAM	Q	Tc	Intensity	Fp(Fm)	Ар	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	13.80	11.81	2.965	0.20(0.07)	0.35	5.0	306.00
1	13.78	12.02	2.936	0.20(0.07)	0.35	5.1	306.00
2	1.79	9.20	3.415	0.20(0.17)	0.85	0.6	203.00

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	Q	Tc	Intensity	Fp(Fm)	Ар	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	14.22	9.20	3.415	0.20(0.08)	0.42	4.5	203.00
2	15.35	11.81	2.965	0.20(0.08)	0.40	5.6	306.00
3	15.30	12.02	2.936	0.20(0.08)	0.40	5.7	306.00

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 15.35 Tc(MIN.) = 11.81

EFFECTIVE AREA(ACRES) = 5.65 AREA-AVERAGED Fm(INCH/HR) = 0.08

```
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) = 5.7
                                    300.00 = 1080.00 FEET.
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
**********************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 11.81
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.965
 SUBAREA LOSS RATE DATA(AMC II):
                                         Ap SCS
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                Fp
     LAND USE
                   GROUP
                         (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                           0.66
                                        0.100
                     D
                                0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 1.75
 EFFECTIVE AREA(ACRES) = 6.31 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
 TOTAL AREA(ACRES) = 6.3
                          PEAK FLOW RATE(CFS) =
************************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1
   ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.81
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.37
 EFFECTIVE STREAM AREA(ACRES) = 6.31
 TOTAL STREAM AREA(ACRES) = 6.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.41
****************************
 FLOW PROCESS FROM NODE
                    103.00 TO NODE
                                 102.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 40.00
 ELEVATION DATA: UPSTREAM(FEET) = 53.60 DOWNSTREAM(FEET) = 52.80
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
                           Page 12
```

```
16181P25.RES
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
                                     5.000
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                             Aр
                                                   SCS Tc
     LAND USE
                    GROUP (ACRES)
                                   (INCH/HR)
                                            (DECIMAL) CN (MIN.)
                                              0.100 75 5.00
 COMMERCIAL
                      D
                              0.10 0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) =
                     0.10 PEAK FLOW RATE(CFS) = 0.43
****************************
 FLOW PROCESS FROM NODE
                      102.00 TO NODE
                                     102.00 \text{ IS CODE} = 81
   .....
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 5.00
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                                    SCS
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                      D
                              0.84
                                     0.20
                                              0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.84 SUBAREA RUNOFF(CFS) = 3.63
 EFFECTIVE AREA(ACRES) = 0.94 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 0.9
                             PEAK FLOW RATE(CFS) =
**********************************
                      102.00 TO NODE
 FLOW PROCESS FROM NODE
                                     101.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 52.80 DOWNSTREAM ELEVATION(FEET) =
 STREET LENGTH(FEET) = 1570.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 24.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 18.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.180
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.180
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

Page 13

16181P25.RES

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.64
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.72
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.11
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 8.42 Tc(MIN.) = 13.42
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.758
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       SCS
                                        Fp
                                                 Aр
      LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                                2.11
                                                0.100
                        D
                                         0.20
                                                        75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 2.11 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 3.05 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 3.0
                                PEAK FLOW RATE(CFS) =
                                                          7.52
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 9.79
 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 2.33
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE
                                          101.00 = 1610.00 FEET.
********************************
 FLOW PROCESS FROM NODE
                       101.00 TO NODE
                                       101.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                            13.42
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) =
                             3.05
 TOTAL STREAM AREA(ACRES) = 3.05
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.52
 ** CONFLUENCE DATA **
  STREAM
             0
                  Tc
                       Intensity Fp(Fm)
                                                Ae
                                                       HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                (ACRES)
  NUMBER
                                                         NODE
          15.62 9.20 3.415 0.20(0.08) 0.38
                                                5.2
     1
                                                           203.00
          16.41 11.81
                          2.965 0.20(0.07)0.37
     1
                                                  6.3
                                                           306.00
          16.36 12.02 2.936 0.20( 0.07) 0.37 6.3
     1
                                                           306.00
     2
           7.52 13.42 2.758 0.20(0.02)0.10
                                                  3.0
                                                           103.00
```

16181P25.RES

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap
                                                Ae HEADWATER
  NUMBER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                (ACRES)
                                                        NODE
            22.00 9.20 3.415 0.20(0.06) 0.30 7.3
     1
                                                           203.00
          23.53 11.81 2.965 0.20( 0.06) 0.29
     2
                                                   9.0
                                                           306.00
                                                 9.1
            23.52 12.02 2.936 0.20( 0.06) 0.29
     3
                                                           306.00
            22.86 13.42 2.758 0.20(0.06) 0.28 9.4
     4
                                                          103.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 23.53 Tc(MIN.) = 11.81 EFFECTIVE AREA(ACRES) = 8.99 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) = 9.4
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE
                                           101.00 = 1610.00 FEET.
************************************
 FLOW PROCESS FROM NODE
                        101.00 TO NODE
                                       100.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 39.70 DOWNSTREAM(FEET) = 38.00
 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.93
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                23.53
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 11.88
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE 100.00 = 1660.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 9.4 TC(MIN.) = 11.88
EFFECTIVE AREA(ACRES) = 8.99 AREA-AVERAGED Fm(INCH/HR)= 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.291
 PEAK FLOW RATE(CFS) = 23.53
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
         22.00 9.27 3.402 0.20( 0.06) 0.30 7.3 203.00
23.53 11.88 2.956 0.20( 0.06) 0.29 9.0 306.00
23.52 12.08 2.927 0.20( 0.06) 0.29 9.1 306.00
22.86 13.49 2.751 0.20( 0.06) 0.28 9.4 103.00
     1
     2
     3
______
```

Page 15

16181P25.RES

END OF RATIONAL METHOD ANALYSIS

^

Job Name: Newport Crossings Date: 8/28/2018

Job #: 1618-001 Run Name: 16181EX2

Description: Existing Onsite 2 year design storn

Page:

Node t	o Node	Code	Elev 1 (feet)	Elev 2 (feet)	Length (feet)	Runoff Coeff. (C)	Area (ac.)	Comments
107	106	2	52.9	52.6	55	D D	0.10	INITIAL SUBAREA
106	105	5	52.6	48.3	980	D	2.52	OPEN FLOW
105	105	1						ADD SUBAREA B1 CONFLUENCE 1 OF 2
107	108	2	52.9	52.6	55	D	0.10	INITIAL SUBAREA
108	105	5	52.6	48.3	610	D	1.74	OPEN FLOW
		_						ADD SUBAREA B2
105	105	1						CONFLUENCE 2 OF 2
105	105	8				D	1.23	ADDITION OF SUBAREA B3
105	104	5	48.3	46.6	30			OPEN FLOW
							5.69	
		1						
<u> </u>								

********************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1355 Analysis prepared by: Fuscoe Engineering 6390 Greenwich Drive Suite 170 San Diego, CA 92122 ******************** DESCRIPTION OF STUDY **************** * NEWPORT CROSSINGS * EXISTING CONDITION * 2-YEAR STORM EVENT ******************************* FILE NAME: 16181EX2.DAT TIME/DATE OF STUDY: 11:54 08/29/2018 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY NO. (FT) (FT) (FT) (FT) (FT) (FT) (n) === ==== 24.0 18.0 0.180/0.180/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

```
*********************************
 FLOW PROCESS FROM NODE
                     ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 55.00
 ELEVATION DATA: UPSTREAM(FEET) = 52.90 DOWNSTREAM(FEET) = 52.60
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                  SCS SOIL
  DEVELOPMENT TYPE/
                            AREA
                                    Fp
                                             Aр
                                                 SCS Tc
     LAND USE
                    GROUP (ACRES) (INCH/HR)
                                           (DECIMAL) CN (MIN.)
                                                   75 5.00
 COMMERCIAL
                      D
                             0.10 0.20
                                            0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) =
********************************
 FLOW PROCESS FROM NODE
                     106.00 TO NODE
                                   105.00 IS CODE = 54
    -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.60 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 980.00 CHANNEL SLOPE = 0.0044
 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 50.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.12
      ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
          CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
          ALLOWABLE DEPTH).
          AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
          ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.312
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                    Fp
                                                  SCS
     LAND USE
                    GROUP
                           (ACRES) (INCH/HR)
                                           (DECIMAL) CN
 COMMERCIAL
                      D
                             2.52
                                  0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.06
 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 7.93
```

```
Tc(MIN.) = 12.93
 SUBAREA AREA(ACRES) = 2.52 SUBAREA RUNOFF(CFS) = EFFECTIVE AREA(ACRES) = 2.62 AREA-AVERAGED Fm(INCH/HF
                              AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 2.6
                                PEAK FLOW RATE(CFS) =
                                                       3.05
       ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
          CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
          ALLOWABLE DEPTH).
          AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
          ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 *GIVEN HEIGHT(FEET) = 0.12 ESTIMATED CHANNEL BASE(FEET) = 11.87
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 1.35
 LONGEST FLOWPATH FROM NODE 107.00 TO NODE 105.00 = 1035.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.93
 RAINFALL INTENSITY(INCH/HR) = 1.31
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 2.62
 TOTAL STREAM AREA(ACRES) = 2.62
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.05
**********************************
                      107.00 TO NODE
 FLOW PROCESS FROM NODE
                                    108.00 \text{ IS CODE} = 21
    >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 55.00
 ELEVATION DATA: UPSTREAM(FEET) = 52.90 DOWNSTREAM(FEET) = 52.60
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Ap SCS Tc
                                     Fp
                              Page 3
```

16181EX2.RES LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) D 0.10 0.20 0.100 75 5.00 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.20 *********************************** FLOW PROCESS FROM NODE ______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 52.60 DOWNSTREAM(FEET) = 48.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00 CHANNEL SLOPE = 0.0070 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.12 ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY(NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.397 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Aр LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL 1.74 0.20 0.100 D SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.40 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 6.59 Tc(MIN.) =11.59 SUBAREA AREA(ACRES) = 1.74 SUBAREA RUNOFF(CFS) = 2.16 EFFECTIVE AREA(ACRES) = 1.84 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.8 2.28 PEAK FLOW RATE(CFS) = ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY(NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM

ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM

ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.

*GIVEN HEIGHT(FEET) = 0.12 ESTIMATED CHANNEL BASE(FEET) =

```
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 1.56
                         107.00 TO NODE 105.00 =
 LONGEST FLOWPATH FROM NODE
                                                  665.00 FEET.
***********************************
                                    105.00 IS CODE = 1
 FLOW PROCESS FROM NODE
                      105.00 TO NODE
    ......
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.59
 RAINFALL INTENSITY(INCH/HR) = 1.40
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 1.84
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 2.28
 ** CONFLUENCE DATA **
                      Intensity Fp(Fm)
                                             Ae
  STREAM
           Q
                Tc
                                        Ap
                                                   HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                            (ACRES)
  NUMBER
                                                     NODE
           3.05 12.93
                        1.312 0.20(0.02) 0.10
                                              2.6
                                                       107.00
    1
           2.28
                 11.59
                        1.397 0.20(0.02)0.10
                                                1.8
                                                       107.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
           Q
                Tc
                      Intensity Fp(Fm)
                                        Ap
                                             Ae
                                                   HEADWATER
  NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                            (ACRES)
                                                     NODE
           5.19 11.59
                      1.397 0.20( 0.02) 0.10
                                              4.2
                                                       107.00
    1
                        1.312 0.20( 0.02) 0.10
    2
           5.19 12.93
                                               4.5
                                                       107.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.19 Tc(MIN.) =
                                         11.59
 EFFECTIVE AREA(ACRES) = 4.19 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 4.5
 LONGEST FLOWPATH FROM NODE 107.00 TO NODE
                                       105.00 = 1035.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                      105.00 TO NODE
                                    105.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
```

```
MAINLINE Tc(MIN.) = 11.59
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.397
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                              Aр
                                                    SCS
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                              1.23
                                              0.100
                                                     75
 COMMERCIAL
                       D
                                   0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.23 SUBAREA RUNOFF(CFS) = 1.52 EFFECTIVE AREA(ACRES) = 5.42 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 5.7
                             PEAK FLOW RATE(CFS) =
**********************************
 FLOW PROCESS FROM NODE
                      ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 48.30 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 30.00 CHANNEL SLOPE = 0.0567
 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 50.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.12
       ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
          CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
          ALLOWABLE DEPTH).
          AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
          ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 *GIVEN HEIGHT(FEET) = 0.12 ESTIMATED CHANNEL BASE(FEET) =
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                 6.72
 FLOW VELOCITY(FEET/SEC.) = 4.46 FLOW DEPTH(FEET) =
 TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 11.66
 LONGEST FLOWPATH FROM NODE 107.00 TO NODE
                                       104.00 = 1065.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 5.7 TC(MIN.) = 11.66
EFFECTIVE AREA(ACRES) = 5.42 AREA-AVERAGED Fm(INCH/HR)= 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.100
 PEAK FLOW RATE(CFS) =
                       6.72
 ** PEAK FLOW RATE TABLE **
                      Intensity Fp(Fm)
  STREAM
                 Tc
                                              Ae
                                                   HEADWATER
  NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
                                                      NODE
            6.72 11.66 1.392 0.20(0.02) 0.10
                                                5.4
                                                        107.00
                         1.308 0.20( 0.02) 0.10
            6.62 13.00
                                                5.7
                                                        107.00
______
```

END OF RATIONAL METHOD ANALYSIS

1

6390 Greenwich Drive, Suite 170 San Diego, California 92122 tel 858.554.1500 • fax 858.597.0335 www.fuscoe.com Job Name: Newport Crossings Date: 8/28/2018

Job #: 1618-001 Run Name: 16181PR2

Description: Proposed Onsite 2 year design storm

Page: 1

Node t	o Node	Code	Elev 1	Elev 2	Length	Runoff	Area	Comments
			(feet)	(feet)	(feet)	Coeff. (C)	(ac.)	
306	305	2	124.2	123.5	65.0	D	0.10	initial Subarea
305	304	5	52.0	50.8	60.0			SURFACE FLOW
303	304	5	32.0	30.6	60.0			SURFACE FLOW
304	304	8				D	0.59	ADDITION OF SUBAREA C1
								, , , , , , , , , , , , , , , , , , , ,
304	303	3	46.8	45.0	445.0			PIPE FLOW
303	303	8				D	0.49	ADDITION OF SUBAREA C2
222	000		45.0	4.4.7	225.2			DIDE 51 0114
303	302	3	45.0	44.1	225.0			PIPE FLOW
302	302	8				D	1.50	ADDITION OF SUBAREA C3
302	302	O					1.50	ADDITION OF SUBARLA CS
302	301	3	44.1	43.0	250.0			PIPE FLOW
301	301	1						CONFLUENCE 1 OF 2
306	305	2	124.2	122.9	65.0	D	0.10	initial subarea
005	000		50.0	C1 1	75.0			CLIDEA CE EL OVA
305	309	5	52.0	51.1	75.0			SURFACE FLOW
309	309	8				D	0.22	ADDITION OF SUBAREA C4
007	007	0					0.22	ABBITION OF SOBAREA CT
309	308	3	47.1	45.8	255.0			PIPE FLOW
308	308	8				D	0.51	ADDITION OF SUBAREA C5
								7177 71 0111
308	307	3	45.8	44.1	335.0			PIPE FLOW
307	307	8				D	1.57	ADDITION OF SUBAREA C6
307	307	U					1.57	ADDITION OF JUDANLA CO
307	301	3	44.1	43.0	215.0			PIPE FLOW
		_						
301	301	1						CONFLUENCE 2 OF 2
301	300	3	39.8	39.7	35.0			PIPE FLOW

6390 Greenwich Drive, Suite 170 San Diego, California 92122 tel 858.554.1500 • fax 858.597.0335 www.fuscoe.com Job Name: Newport Crossings Date: 8/28/2018

Job #: 1618-001 Run Name: 16181PR2

Description: Proposed Onsite 2 year design storm

Page: 2

Node t	o Node	Code	Elev 1 (feet)	Elev 2 (feet)	Length (feet)	Friction Coeff.	Area (ac.)	Comments
300	300	1	(1001)	(1881)	(1001)	Coon.	(46.)	CONFLUENCE 1 OF 2
202	202	2	50.0	50.6	145.0	D	0.10	INIITIAL CLIDADEA
203	202	Z	52.9	30.0	145.0	D	0.10	initial subarea
202	202	8				D	0.16	ADDITION OF SUBAREA B1
202	201	3	44.0	41.8	220.0			PIPE FLOW
201	201	8				D	0.35	ADDITION OF SUBAREA B2
201	300	3	41.8	39.7	40.0			PIPE FLOW
300	300	1						CONFLUENCE 2 OF 2

********************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1355 Analysis prepared by: Fuscoe Engineering 6390 Greenwich Drive Suite 170 San Diego, CA 92122 ******************** DESCRIPTION OF STUDY **************** * NEWPORT CROSSINGS * PROPOSED CONDITION * 2-YEAR STORM EVENT ******************************* FILE NAME: 16181PR2.DAT TIME/DATE OF STUDY: 09:54 08/29/2018 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) NO. (FT) (FT) (FT) (FT) (n) === ==== 24.0 18.0 0.180/0.180/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

```
**********************************
                     306.00 TO NODE
 FLOW PROCESS FROM NODE
                                  305.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 ELEVATION DATA: UPSTREAM(FEET) = 124.20 DOWNSTREAM(FEET) = 123.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                           AREA
                                   Fp
                                           Ap
                                                 SCS Tc
                    GROUP
                          (ACRES) (INCH/HR)
     LAND USE
                                         (DECIMAL) CN (MIN.)
 CONDOMINIUMS
                     D
                            0.10
                                   0.20
                                           0.350
                                                  75
                                                      5.00
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                    0.10 PEAK FLOW RATE(CFS) =
***********************************
                                  304.00 \text{ IS CODE} = 54
 FLOW PROCESS FROM NODE
                     305.00 TO NODE
    >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                             52.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE = 0.0200
 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) =
                              0.20
 FLOW VELOCITY(FEET/SEC.) = 0.41 FLOW DEPTH(FEET) =
 TRAVEL TIME(MIN.) = 2.43 Tc(MIN.) = 7.43
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                     304.00 = 125.00 FEET.
 FLOW PROCESS FROM NODE
                     304.00 TO NODE
                                  304.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) =
                  7.43
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.804
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                                 SCS
                                   Fp
                    GROUP
                                 (INCH/HR)
                                         (DECIMAL) CN
     LAND USE
                          (ACRES)
 CONDOMINIUMS
                     D
                            0.59
                                    0.20
                                           0.350
                                                  75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                            Page 2
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) = 0.92
 EFFECTIVE AREA(ACRES) = 0.69 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) =
****************************
 FLOW PROCESS FROM NODE 304.00 TO NODE 303.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 46.80 DOWNSTREAM(FEET) = 45.00
 FLOW LENGTH(FEET) = 445.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.73
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 1.08
 PIPE TRAVEL TIME(MIN.) = 2.72 Tc(MIN.) =
                                    10.14
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                    303.00 =
                                             570.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                    303.00 TO NODE
                                 303.00 \text{ IS CODE} = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 10.14
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.508
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fp
                                              SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
             D 0.49 0.20
 CONDOMINIUMS
                                         0.350
                                               75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.49 SUBAREA RUNOFF(CFS) = 0.63
 EFFECTIVE AREA(ACRES) = 1.18 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 1.2 PEAK FLOW RATE(CFS) =
******************************
 FLOW PROCESS FROM NODE 303.00 TO NODE 302.00 IS CODE = 31
    -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 45.00 DOWNSTREAM(FEET) = 44.10
 FLOW LENGTH(FEET) = 225.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.5 INCHES
```

```
16181PR2.RES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.96
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              1.53
 PIPE TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) =
                                   11.41
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                   302.00 = 795.00 FEET.
***************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81
   >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 11.41
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.410
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                              SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 CONDOMINIUMS
                   D
                          1.50 0.20
                                        0.350
                                               75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 2.68 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) =
***************************
 FLOW PROCESS FROM NODE
                   302.00 TO NODE 301.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 44.10 DOWNSTREAM(FEET) = 43.00
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.68
 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.23
 PIPE TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) =
                                   12.54
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                   301.00 = 1045.00 FEET.
******************************
 FLOW PROCESS FROM NODE
                   301.00 TO NODE 301.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.54
 RAINFALL INTENSITY(INCH/HR) =
```

```
16181PR2.RES
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 2.68
 TOTAL STREAM AREA(ACRES) = 2.68
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 3.23
********************************
 FLOW PROCESS FROM NODE
                    306.00 TO NODE
                                   305.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 ELEVATION DATA: UPSTREAM(FEET) = 124.20 DOWNSTREAM(FEET) = 122.90
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                   Fρ
                                            Ap SCS Tc
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                                                  75
 CONDOMINIUMS
                      D
                             0.10
                                           0.350
                                                       5.00
                                    0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                    0.10 PEAK FLOW RATE(CFS) =
***********************************
 FLOW PROCESS FROM NODE
                     305.00 TO NODE 309.00 IS CODE = 54
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE = 0.0120
 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 0.20
 FLOW VELOCITY(FEET/SEC.) = 0.41 FLOW DEPTH(FEET) = 0.00
 TRAVEL TIME(MIN.) = 3.03 Tc(MIN.) = 8.03
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                      309.00 =
                                                140.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE = 81
```

Page 5

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>

```
MAINLINE Tc(MIN.) = 8.03
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.724
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL AREA
  DEVELOPMENT TYPE/
                                       Fp
                                                Aр
                                                      SCS
     LAND USE
                      GROUP
                             (ACRES)
                                    (INCH/HR)
                                              (DECIMAL)
                                                       CN
 CONDOMINIUMS
                        D
                               0.22
                                        0.20
                                               0.350
                                                       75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.33
EFFECTIVE AREA(ACRES) = 0.32 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.3
                                PEAK FLOW RATE(CFS) =
**********************************
                       309.00 TO NODE
                                      308.00 \text{ IS CODE} = 31
 FLOW PROCESS FROM NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                               47.10 DOWNSTREAM(FEET) = 45.80
 FLOW LENGTH(FEET) = 255.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.42
                                    NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 9.00
 PIPE-FLOW(CFS) = 0.48
 PIPE TRAVEL TIME(MIN.) = 1.76
                             Tc(MIN.) =
                                         9.79
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                         308.00 =
                                                    395.00 FEET.
***********************************
 FLOW PROCESS FROM NODE
                       308.00 TO NODE
                                      308.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
                    9.79
 MAINLINE Tc(MIN.) =
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.539
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                             AREA
                                       Fp
                                                Aр
                                                      SCS
     LAND USE
                      GROUP
                             (ACRES)
                                    (INCH/HR)
                                              (DECIMAL) CN
 CONDOMINIUMS
                               0.51
                                                       75
                        D
                                        0.20
                                               0.350
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) =
                      0.51 SUBAREA RUNOFF(CFS) = 0.67
 EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.8
                              PEAK FLOW RATE(CFS) =
                                                        1.10
 ********************************
 FLOW PROCESS FROM NODE
                       308.00 TO NODE
                                      307.00 \text{ IS CODE} = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 45.80 DOWNSTREAM(FEET) = 44.10
 FLOW LENGTH(FEET) = 335.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.88
 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   1.10
 PIPE TRAVEL TIME(MIN.) = 1.94 Tc(MIN.) = 11.73
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                      307.00 =
                                               730.00 FEET.
***********************************
                     307.00 TO NODE
                                  307.00 \text{ IS CODE} = 81
 FLOW PROCESS FROM NODE
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 11.73
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.387
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                    Fp
                                                  SCS
     LAND USE
                    GROUP (ACRES)
                                  (INCH/HR)
                                          (DECIMAL) CN
 CONDOMINIUMS
                      D
                             1.57
                                     0.20
                                            0.350
                                                   75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 1.57 SUBAREA RUNOFF(CFS) = 1.86 EFFECTIVE AREA(ACRES) = 2.40 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 2.4
                            PEAK FLOW RATE(CFS) =
                                                   2.85
***************************
 FLOW PROCESS FROM NODE
                     307.00 TO NODE
                                   301.00 \text{ IS CODE} = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 44.10 DOWNSTREAM(FEET) = 43.00
 FLOW LENGTH(FEET) = 215.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.80
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.85
 PIPE TRAVEL TIME(MIN.) = 0.94 Tc(MIN.) =
                                      12.67
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                      301.00 = 945.00 FEET.
 ***************************
 FLOW PROCESS FROM NODE 301.00 TO NODE
                                   301.00 \text{ IS CODE} = 1
                             Page 7
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.67
 RAINFALL INTENSITY(INCH/HR) = 1.33
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 2.40
 TOTAL STREAM AREA(ACRES) = 2.40
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                 Tc Intensity Fp(Fm)
  STREAM
           Q
                                         Ар
                                              Ae
                                                   HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
  NUMBER
                                                      NODE
            3.23 12.54 1.335 0.20( 0.07) 0.35 2.7
                                                        306.00
            2.85 12.67
                         1.327 0.20( 0.07) 0.35
                                                2.4
                                                        306.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
           Q Tc Intensity Fp(Fm) Ap
                                              Ae HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
  NUMBER
                                                      NODE
                         1.335 0.20( 0.07) 0.35 5.1
           6.07 12.54
                                                        306.00
                         1.327 0.20( 0.07) 0.35
                                                5.1
            6.06 12.67
                                                        306.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.07 Tc(MIN.) = 12.54 EFFECTIVE AREA(ACRES) = 5.06 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 5.1
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                        301.00 = 1045.00 FEET.
**********************************
                      301.00 TO NODE
 FLOW PROCESS FROM NODE
                                     300.00 \text{ IS CODE} = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                              39.80 DOWNSTREAM(FEET) = 39.70
 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.67
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) = 6.07
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                   12.70
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE
                                   300.00 =
                                           1080.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
   ______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.70
 RAINFALL INTENSITY(INCH/HR) = 1.33
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 5.06
 TOTAL STREAM AREA(ACRES) = 5.08
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               6.07
********************************
 FLOW PROCESS FROM NODE 203.00 TO NODE 202.00 IS CODE = 21
    >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 145.00
 ELEVATION DATA: UPSTREAM(FEET) = 52.90 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.099
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.716
 SUBAREA To AND LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
  DEVELOPMENT TYPE/
                                             SCS Tc
                                 Fp
                                         Ар
                         (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                   GROUP
                                        0.850
 PUBLIC PARK
                    D
                           0.10
                                 0.20
                                               75 8.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 0.14
 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.14
********************************
                   202.00 TO NODE 202.00 IS CODE = 81
 FLOW PROCESS FROM NODE
    .....
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) =
                 8.10
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.716
```

```
SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                           AREA
                                   Fp
                                                 SCS
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                    D
                            0.16
                                   0.20
                                           0.850
                                                  75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
                           SUBAREA RUNOFF(CFS) = 0.22
 SUBAREA AREA(ACRES) = 0.16
 EFFECTIVE AREA(ACRES) = 0.26 AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 0.3
                            PEAK FLOW RATE(CFS) =
******************************
 FLOW PROCESS FROM NODE
                     202.00 TO NODE
                                  201.00 \text{ IS CODE} = 31
    -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 44.00 DOWNSTREAM(FEET) = 41.80
 FLOW LENGTH(FEET) = 220.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.90
 ESTIMATED PIPE DIAMETER(INCH) = 6.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) =
                                      9.36
 LONGEST FLOWPATH FROM NODE 203.00 TO NODE
                                      201.00 =
                                               365.00 FEET.
********************************
 FLOW PROCESS FROM NODE
                     201.00 TO NODE
                                  201.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 9.36
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.579
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL
  DEVELOPMENT TYPE/
                           AREA
                                   Fp
                                            Ар
                                                 SCS
                    GROUP
     LAND USE
                          (ACRES)
                                 (INCH/HR)
                                         (DECIMAL) CN
 PUBLIC PARK
                     D
                            0.35
                                    0.20
                                           0.850
                                                  75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 0.44
 EFFECTIVE AREA(ACRES) = 0.61 AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS) =
                                                  0.77
******************************
                     201.00 TO NODE
 FLOW PROCESS FROM NODE
                                  300.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

16181PR2.RES >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 41.80 DOWNSTREAM(FEET) = 39.70 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.60 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.77 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 9.46 LONGEST FLOWPATH FROM NODE 203.00 TO NODE 300.00 = 405.00 FEET. ****************************** FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 1>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.46 RAINFALL INTENSITY(INCH/HR) = 1.57 AREA-AVERAGED Fm(INCH/HR) = 0.17AREA-AVERAGED Fp(INCH/HR) = 0.20AREA-AVERAGED Ap = 0.85EFFECTIVE STREAM AREA(ACRES) = 0.61 TOTAL STREAM AREA(ACRES) = 0.61 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.77 ** CONFLUENCE DATA ** Tc Intensity Fp(Fm) STREAM Q Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NUMBER NODE 6.07 12.70 1.326 0.20(0.07) 0.35 5.1 306.00 5.1 1 6.06 12.83 1.318 0.20(0.07)0.35 306.00 0.77 9.46 1.569 0.20(0.17) 0.85 0.6 203.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	Q	Tc	Intensity	Fp(Fm)	Ар	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	6.17	9.46	1.569	0.20(0.08)	0.42	4.4	203.00
2	6.70	12.70	1.326	0.20(0.08)	0.40	5.7	306.00
3	6.69	12.83	1.318	0.20(0.08)	0.40	5.7	306.00

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 6.70 Tc(MIN.) = 12.70

EFFECTIVE AREA(ACRES) = 5.67 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40

TOTAL AREA(ACRES) = 5.7

LONGEST FLOWPATH FROM NODE 306.00 TO NODE 300.00 = 1080.00 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 5.7 TC(MIN.) = 12.70 EFFECTIVE AREA(ACRES) = 5.67 AREA-AVERAGED Fm(INCH/HR)= 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.404

PEAK FLOW RATE(CFS) = 6.70

** PEAK FLOW RATE TABLE **

STREAM	Q	Tc	Intensity	Fp(Fm)	Ар	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	6.17	9.46	1.569	0.20(0.08)	0.42	4.4	203.00
2	6.70	12.70	1.326	0.20(0.08)	0.40	5.7	306.00
3	6.69	12.83	1.318	0.20(0.08)	0.40	5.7	306.00

______ ______

END OF RATIONAL METHOD ANALYSIS

Appendix 2

A.E.S. Unit Hydrograph Calculations and Low Loss Fraction Estimations

2-Year Existing Condition Y-bar Calculation.txt

NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1355

Analysis prepared by:

Fuscoe Engineering 6390 Greenwhich Dr Suite 170 San Diego, CA 92122

Problem Descriptions:

NEWPORT CROSSINGS

2-YEAR DESIGN STORM EXISTING CONDITIONS

Y-BAR CALCULATION

*** NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)
AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II:

TOTAL 24-HOUR DURATION RAINFALL DEPTH = 2.05 (inches)

SOIL-COVER PERCENT OF SCS CURVE LOSS RATE AREA TYPE PERVIOUS AREA Fp(in./hr.) (Acres) NUMBER YIELD 5.69 0.10 75. 0.200 0.889 1

TOTAL AREA (Acres) = 5.69

AREA-AVERAGED LOSS RATE, Fm (in./hr.) = 0.000

AREA-AVERAGED LOW LOSS FRACTION, $\overline{Y} = 0.111$

2-Year Existing Condition Hydrograph Calculation.txt

```
*************************
                  SMALL AREA UNIT HYDROGRAPH MODEL
______
       (C) Copyright 1989-2014 Advanced Engineering Software (aes)
          Ver. 21.0 Release Date: 06/01/2014 License ID 1355
                      Analysis prepared by:
                        Fuscoe Engineering
                       6390 Greenwich Drive
                           Suite 170
                       San Diego, CA 92122
***********************************
Problem Descriptions:
 NEWPORT CROSSINGS
 2-YEAR DESIGN STORM EXISTING CONDITION
 HYDROGRAPH VOLUME CALCULATION
   RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
   TOTAL CATCHMENT AREA(ACRES) =
                             5.69
   SOIL-LOSS RATE, Fm, (INCH/HR) = 0.020
   LOW LOSS FRACTION = 0.111
   TIME OF CONCENTRATION(MIN.) = 11.66
   SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
   ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
   RETURN FREQUENCY(YEARS) =
     5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.19
     30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40
     1-HOUR POINT RAINFALL VALUE(INCHES) = 0.53
     3-HOUR POINT RAINFALL VALUE(INCHES) = 0.89
     6-HOUR POINT RAINFALL VALUE(INCHES) = 1.22
     24-HOUR POINT RAINFALL VALUE(INCHES) = 2.05
   TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 0.79
   TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =
***********************************
                               2.5 5.0 7.5
 TIME
        VOLUME
                  Q
                       0.
(HOURS)
        (AF)
                  (CFS)
```

	2-Year	Existin	g Condition	. Hydrograph	Calculation.txt	
0.06	0.0000	0.00	Q		•	
0.26	0.0012	0.15	Q		•	
0.45	0.0035	0.15	Q		•	
0.65	0.0059	0.15	Q			
0.84	0.0083	0.15	Q			•
1.04	0.0107	0.15	Q			
1.23	0.0131	0.15	Q	•	•	•
1.43	0.0156	0.15	Q	•	•	•
1.62	0.0130	0.15	Q	•	•	•
1.81	0.0206	0.16	Q	•	•	•
2.01	0.0231				•	•
		0.16	Q	•	•	•
2.20	0.0256	0.16	Q	•	•	•
2.40	0.0282	0.16	Q	•	•	•
2.59	0.0307	0.16	Q	•	•	•
2.79	0.0333	0.16	Q		•	•
2.98	0.0360	0.16	Q		•	•
3.17	0.0386	0.17	Q		•	•
3.37	0.0413	0.17	Q		•	•
3.56	0.0440	0.17	Q	•	•	•
3.76	0.0467	0.17	Q		•	•
3.95	0.0495	0.17	Q		•	•
4.15	0.0523	0.17	Q		•	•
4.34	0.0551	0.18	Q		•	•
4.53	0.0579	0.18	Q		•	•
4.73	0.0608	0.18	Q		•	•
4.92	0.0637	0.18	Q		•	•
5.12	0.0666	0.18	Q		•	•
5.31	0.0696	0.19	Q		•	•
5.51	0.0726	0.19	Q		•	•
5.70	0.0756	0.19	Q		•	•
5.89	0.0787	0.19	Q		•	•
6.09	0.0818	0.19	Q		•	•
6.28	0.0849	0.20	Q		•	•
6.48	0.0881	0.20	Q		•	•
6.67	0.0913	0.20	Q		•	•
6.87	0.0946	0.20	Q		•	
7.06	0.0979	0.21	Q		•	
7.26	0.1013	0.21	Q		•	
7.45	0.1047	0.21	Q		•	
7.64	0.1081	0.22	Q			
7.84	0.1116	0.22	Q			
8.03	0.1151	0.22	Q		•	•
8.23	0.1187	0.23	Q	•	•	•
8.42	0.1224	0.23	Q	•	•	•
8.62	0.1261	0.23	Q	•	•	•
8.81	0.1201	0.23	Q		•	•
9.00	0.1233	0.24	Q		•	•
9.20	0.1337	0.24	Q		•	•
J. کل	0.13/0	0.23	A.	•	•	•

Page 2

	2-Year	Existin	g Conditi	ion Hyd	rograph	Calculat	ion.txt	
9.39	0.1416	0.25	Q		•			
9.59	0.1456	0.25	.Q	•				
9.78	0.1497	0.26	. Q	•	•			
9.98	0.1539	0.26	. Q	•	•			
10.17	0.1582	0.27	. Q	•	•			
10.36	0.1626	0.28	.Q	•	•			
10.56	0.1670	0.28	.Q					
10.75	0.1716	0.29	.Q	•				
10.95	0.1763	0.29	.Q	•				
11.14	0.1810	0.30	.Q	•				
11.34	0.1859	0.31	.Q					
11.53	0.1909	0.32	.Q					
11.72	0.1961	0.32	.Q					
11.92	0.2014	0.34	.Q					
12.11	0.2068	0.34	.Q					
12.31	0.2130	0.43	.Q	•	•		•	
12.50	0.2200	0.44	.Q	•	•		•	
12.70	0.2272	0.46	.Q	•	•		•	
12.89	0.2347	0.47	.Q	•	•		•	
13.09	0.2347	0.49	.Q	•	•		•	
13.28	0.2503	0.50	. Q	•	•		•	
13.47	0.2586	0.53	. Q . Q	•	•		•	
13.47	0.2580	0.54	. Q . Q	•	•		•	
13.86	0.2071			•	•		•	
14.06	0.2854	0.57 0.59	. Q	•	•		•	
14.25	0.2054	0.66	. Q	•	•		•	
14.25	0.3063	0.68	. Q	•	•		•	
			. Q	•	•		•	
14.64	0.3178	0.74	. Q	•	•		•	
14.83	0.3300	0.78	. Q	•	•		•	
15.03	0.3434	0.88	. Q	•	•		•	
15.22	0.3580	0.95	. Q	•	•		•	
15.42	0.3746	1.11	. Q	•	•		•	
15.61	0.3922	1.09	. Q	•	•		•	
15.81	0.4141	1.62	. Q	•	•		•	
16.00	0.4453	2.27	•	Q.	•	•	•	
16.19	0.5199	7.02		•	•	Q	•	
16.39	0.5866	1.29	. Q	•	•		•	
16.58	0.6052	1.03	. Q	•	•		•	
16.78	0.6201	0.82	. Q	•	•		•	
16.97	0.6324	0.71	. Q	•	•		•	
17.17	0.6432	0.62	. Q	•	•			
17.36	0.6527	0.56	. Q	•	•			
17.55	0.6612	0.51	. Q	•	•			
17.75	0.6692	0.48	.Q	•	•			
17.94	0.6766	0.45	.Q	•	•			
18.14	0.6836	0.41	.Q	•	•		•	
18.33	0.6895	0.33	.Q	•	•		•	
18.53	0.6947	0.31	.Q	•	•			

Page 3

	2-Year	Existin	g Conditio	n Hydrogra	ph Calcula	tion.txt	
18.72	0.6996	0.30	Q.		•	•	•
18.92	0.7043	0.28	.Q	•	•	•	•
19.11	0.7087	0.27	.Q	•	•	•	•
19.30	0.7130	0.26	.Q	•	•	•	•
19.50	0.7171	0.25	.Q	•	•	•	•
19.69	0.7211	0.24	Q	•	•	•	•
19.89	0.7249	0.23	Q	•	•	•	•
20.08	0.7286	0.23	Q	•	•	•	•
20.28	0.7322	0.22	Q	•	•	•	•
20.47	0.7357	0.21	Q	•	•	•	•
20.66	0.7391	0.21	Q	•	•	•	•
20.86	0.7424	0.20	Q	•	•	•	•
21.05	0.7457	0.20	Q	•	•	•	•
21.25	0.7488	0.19	Q	•	•	•	•
21.44	0.7519	0.19	Q	•	•	•	•
21.64	0.7549	0.18	Q	•	•	•	•
21.83	0.7578	0.18	Q	•	•	•	•
22.02	0.7607	0.18	Q	•	•	•	•
22.22	0.7635	0.17	Q	•	•	•	•
22.41	0.7662	0.17	Q	•	•	•	•
22.61	0.7689	0.17	Q	•	•	•	•
22.80	0.7716	0.16	Q	•	•	•	•
23.00	0.7742	0.16	Q	•	•	•	•
23.19	0.7768	0.16	Q	•	•	•	•
23.38	0.7793	0.16	Q	•	•	•	•
23.58	0.7817	0.15	Q	•	•	•	•
23.77	0.7842	0.15	Q	•	•	•	•
23.97	0.7866	0.15	Q	•	•	•	•
24.16	0.7889	0.15	Q	•	•	•	•
24.36	0.7901	0.00	Q	•	•	•	•

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	=======
0%	1445.8
10%	151.6
20%	35.0
30%	23.3
40%	11.7
50%	11.7
60%	11.7
70%	11.7
80%	11.7

Page 4

2-Year Existing Condition Hydrograph Calculation.txt 90% 11.7

2-Year Proposed Condition Y-bar Calculation.txt

NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1355

Analysis prepared by:

Fuscoe Engineering 6390 Greenwhich Dr Suite 170 San Diego, CA 92122

Problem Descriptions:

NEWPORT CROSSINGS

2-YEAR DESIGN STORM PROPOSED CONDITIONS

Y-BAR CALCULATION

*** NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)
AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II:

TOTAL 24-HOUR DURATION RAINFALL DEPTH = 2.05 (inches)

SOIL-COVER	AREA	PERCENT OF	SCS CURVE	LOSS RATE	
TYPE	(Acres)	PERVIOUS AREA	NUMBER	<pre>Fp(in./hr.)</pre>	YIELD
1	5.08	0.35	75.	0.200	0.887
2	0.61	0.85	75.	0.200	0.884

TOTAL AREA (Acres) = 5.69

AREA-AVERAGED LOSS RATE, Fm (in./hr.) = 0.001

AREA-AVERAGED LOW LOSS FRACTION, $\overline{Y} = 0.113$

2-Year Proposed Condition Hydrograph Calculation.txt

```
*************************
                  SMALL AREA UNIT HYDROGRAPH MODEL
______
       (C) Copyright 1989-2014 Advanced Engineering Software (aes)
          Ver. 21.0 Release Date: 06/01/2014 License ID 1355
                      Analysis prepared by:
                        Fuscoe Engineering
                       6390 Greenwich Drive
                           Suite 170
                       San Diego, CA 92122
***********************************
Problem Descriptions:
 NEWPORT CROSSINGS
 2-YEAR DESIGN STORM PROPOSED CONDITIONS
 HYDROGRAPH VOLUME CALCULATION
   RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
   TOTAL CATCHMENT AREA(ACRES) =
                             5.69
   SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
   LOW LOSS FRACTION = 0.113
   TIME OF CONCENTRATION(MIN.) = 12.72
   SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
   ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
   RETURN FREQUENCY(YEARS) =
     5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.19
     30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40
     1-HOUR POINT RAINFALL VALUE(INCHES) = 0.53
     3-HOUR POINT RAINFALL VALUE(INCHES) = 0.89
     6-HOUR POINT RAINFALL VALUE(INCHES) = 1.22
     24-HOUR POINT RAINFALL VALUE(INCHES) = 2.05
   TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) =
                                            0.78
   TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =
***********************************
                               2.5 5.0 7.5
 TIME
        VOLUME
                  0
                       0.
(HOURS)
        (AF)
                  (CFS)
```

	2-Year	Propose	d Condition	Hydrograph	Calculation.txt	
0.10	0.0006	0.15	Q		•	
0.31	0.0032	0.15	Q		•	
0.52	0.0057	0.15	Q		•	
0.74	0.0083	0.15	Q		•	
0.95	0.0109	0.15	Q		•	
1.16	0.0136	0.15	Q		•	
1.37	0.0162	0.15	Q		•	
1.58	0.0189	0.15	Q		•	
1.80	0.0216	0.16	Q		•	
2.01	0.0243	0.16	Q		•	
2.22	0.0271	0.16	Q		•	
2.43	0.0299	0.16	Q		•	
2.64	0.0327	0.16	Q		•	
2.86	0.0355	0.16	Q		•	
3.07	0.0384	0.16	Q		•	
3.28	0.0413	0.17	Q		•	
3.49	0.0442	0.17	Q		•	
3.70	0.0472	0.17	Q		•	
3.92	0.0502	0.17	Q		•	
4.13	0.0532	0.17	Q			
4.34	0.0563	0.18	Q		•	
4.55	0.0594	0.18	Q		•	
4.76	0.0625	0.18	Q		•	
4.98	0.0656	0.18	Q			
5.19	0.0688	0.18	Q		•	
5.40	0.0721	0.19	Q		•	
5.61	0.0754	0.19	Q		•	
5.82	0.0787	0.19	Q			
6.04	0.0820	0.19	Q		•	
6.25	0.0855	0.20	Q		•	
6.46	0.0889	0.20	Q		•	
6.67	0.0924	0.20	Q			
6.88	0.0960	0.20	Q			
7.10	0.0996	0.21	Q		•	
7.31	0.1032	0.21	Q		•	
7.52	0.1069	0.21	Q			
7.73	0.1107	0.22	Q		•	
7.94	0.1145	0.22	Q		•	
8.16	0.1184	0.22	Q		•	
8.37	0.1224	0.23	Q			
8.58	0.1264	0.23	Q			
8.79	0.1305	0.23	Q			•
9.00	0.1346	0.24	Q		•	•
9.22	0.1389	0.24	Q		• •	•
9.43	0.1432	0.25	.Q		• •	•
9.64	0.1476	0.25	. Q . Q	•	•	•
9.85	0.1521	0.26	. Q	•	•	•
10.06	0.1567	0.26	. Q		•	•
	-		~	•	·	-

Page 2

	2-Year	Proposed	d Condit	ion	Hydrograph	Calculation.	txt
10.28	0.1614	0.27	.Q			-	
10.49	0.1662	0.28	. Q			•	•
10.70	0.1711	0.29	. Q		•	•	•
10.70	0.1711	0.29	. Q . Q	,	•	•	•
11.12	0.1702	0.30	. Q . Q	,	•	•	•
11.34	0.1814	0.30			•	•	•
11.55			.Q	,	•	•	•
	0.1921	0.32	.Q	,	•	•	•
11.76	0.1977	0.32	.Q	,	•	•	•
11.97	0.2035	0.34	.Q		•	•	•
12.18	0.2097	0.37	.Q		•	•	•
12.40	0.2167	0.44	.Q		•	•	•
12.61	0.2244	0.44	.Q		•	•	•
12.82	0.2324	0.47	.Q		•	•	•
13.03	0.2406	0.48	.Q		•	•	•
13.24	0.2492	0.50	. Q		•	•	•
13.46	0.2581	0.51	. Q			•	•
13.67	0.2674	0.55	. Q			•	•
13.88	0.2771	0.56	. Q			•	•
14.09	0.2874	0.61	. Q			•	•
14.30	0.2984	0.65	. Q			•	•
14.52	0.3104	0.71	. Q			•	•
14.73	0.3231	0.74	. Q			•	•
14.94	0.3369	0.83	. Q			•	•
15.15	0.3520	0.89	. Q			•	
15.36	0.3690	1.05	. Q			•	
15.58	0.3874	1.05	. Q			•	•
15.79	0.4093	1.45	. Q			•	•
16.00	0.4395	2.00	•	Q.		•	•
16.21	0.5127	6.36	•			Q.	•
16.42	0.5786	1.17	. Q			•	•
16.64	0.5973	0.96	. Q			•	•
16.85	0.6126	0.79	. Q			•	•
17.06	0.6254	0.68	. Q			•	
17.27	0.6365	0.58	. Q			•	
17.48	0.6462	0.53	. Q			•	
17.70	0.6551	0.49	.Q			•	•
17.91	0.6634	0.45	.Q				
18.12	0.6711	0.43	.Q			•	
18.33	0.6777	0.33	. Q				
18.54	0.6834	0.31	. Q				
18.76	0.6887	0.29	. Q				
18.97	0.6937	0.28	.Q				
19.18	0.6985	0.27	.Q		· ·	•	•
19.39	0.7031	0.26	. Q		•	•	•
19.60	0.7075	0.25	Q Q		•	•	•
19.82	0.7073	0.24	Q	,	•	•	•
20.03	0.7118	0.23	Q	,	•	•	•
20.24	0.7198	0.22	Q	,	•	•	•
		J	τ		· •	•	•

Page 3

	2-Year	Propose	d Cond	ition Hydro	graph Cal	culation.tx	rt .
20.45	0.7237	0.21	Q	•	•	•	•
20.66	0.7274	0.21	Q	•	•	•	•
20.88	0.7310	0.20	Q	•	•	•	•
21.09	0.7345	0.20	Q	•	•	•	•
21.30	0.7379	0.19	Q	•	•	•	•
21.51	0.7412	0.19	Q	•	•	•	•
21.72	0.7444	0.18	Q	•	•	•	•
21.94	0.7476	0.18	Q	•	•	•	•
22.15	0.7507	0.17	Q	•	•	•	•
22.36	0.7537	0.17	Q	•	•	•	•
22.57	0.7567	0.17	Q	•	•	•	•
22.78	0.7596	0.16	Q	•	•	•	•
23.00	0.7624	0.16	Q	•	•	•	•
23.21	0.7652	0.16	Q	•	•	•	•
23.42	0.7679	0.15	Q	•	•	•	•
23.63	0.7706	0.15	Q	•	•	•	•
23.84	0.7733	0.15	Q	•	•	•	•
24.06	0.7758	0.15	Q	•	•	•	•
24.27	0.7771	0.00	Q	•	•	•	•

.....

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Percentile of Peak Flow		Duration (minutes)
=========		=======
0%		1450.1
10%		178.1
20%		38.2
30%		25.4
40%		12.7
50%		12.7
60%		12.7
70%		12.7
80%		12.7
90%		12.7

Page 4

Appendix 3

Existing and Proposed Condition Hydrology Maps

MAJOR BOUNDARY/MAJOR BOUNDARY

SUB AREA BOUNDARY

FLOW PATH

DRAINAGE AREA DESIGNATION

ACRES

SUMMARY

EXISTING CONDITION 2-YEAR STORM/24 HR.					
DESCRIPTION	HYDROLOGIC NODE	TOTAL AREA (ACRE)	TOTAL FLOW (CFS)	Tc (Minutes)	
ONSITE	104)	5.69	6.72	11.66	

HYDROLOGIC NODE

EXISTING CONDITION 25-YEAR STORM/24 HR.							
DESCRIPTION	HYDROLOGIC NODE	TOTAL AREA (ACRE)	TOTAL FLOW (CFS)	Tc (Minutes)			
ONSITE	(104)	5.69	15.09	10.68			
PUBLIC SD	100	9.41	23.73	12.32			

SOIL TYPE D
PROJECT BOUNDARY AREA = 5.69 AC
OFFSITE WATER SHED AREA = 3.72 AC
TOTAL = 9.41 AC

SUMMARY

PROPOSED CONDITION - ONSITE 2-YEAR STORM/24 HR.					
DESCRIPTION HYDROLOGIC NODE		TOTAL AREA (ACRE)	TOTAL FLOW (CFS)	Tc (Minutes)	
ONSITE	300	5.69	6.70	12.70	

PROPOSED CONDITION 25-YEAR STORM/24 HR.					
DESCRIPTION	HYDROLOGIC NODE	TOTAL AREA (ACRE)	TOTAL FLOW (CFS)	Tc (Minutes)	
PUBLIC SD	100	9.41	23.53	11.88	
PARK	20) то 300	0.61	1.79	9.2	
CONDOS	30) to 300	5.08	13.80	11.81	
CONDOS AND PARK	500	5.69	15.35	11.81	

SOIL TYPE D
PROJECT BOUNDARY AREA = 5.69 AC
OFFSITE WATER SHED AREA = 3.72 AC
TOTAL = 9.41 AC

Appendix 4 RECORD STREET IMPROVEMENT PLANS

